File size: 35,157 Bytes
0c8d55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
from typing import Optional, List, Tuple, Union, Literal, Dict
import torch._dynamo
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss
from transformers import GenerationMixin
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
    Qwen2VLModel,
    Qwen2VLPreTrainedModel,
    Qwen2VisionTransformerPretrainedModel, 
    Qwen2VLCausalLMOutputWithPast
)
# from univa.models.modeling_univa_vision_tower import UnivaVisionTower
# from univa.models.configuration_univa import UnivaConfig
from univa.models.qwen2vl.configuration_univa_qwen2vl import UnivaQwen2VLConfig
from univa.models.modeling_univa_denoise_tower import UnivaDenoiseTower

class UnivaQwen2VLModel(Qwen2VLModel):
    def __init__(self, config: UnivaQwen2VLConfig):
        super().__init__(config)
        self.config = config

class UnivaQwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    config_class = UnivaQwen2VLConfig

    def __init__(self, config: UnivaQwen2VLConfig):
        super().__init__(config)
        self.visual = Qwen2VisionTransformerPretrainedModel._from_config(config.vision_config)
        print("visual init done")
        self.model = UnivaQwen2VLModel(config)
        print("model init done")
        self.denoise_tower = UnivaDenoiseTower(config.denoise_tower)
        print("denoise tower init done")

        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.rope_deltas = None  # cache rope_deltas here

        self.forward_denoiser = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_denoise_embeds(
        self,
        input_ids: torch.LongTensor,
        images: Optional[List[torch.FloatTensor]] = None,
        image_position: Optional[torch.LongTensor] = None,
    ):
        input_embeds = self(input_ids, images, image_position)[0]
        input_embeds = self.denoise_tower(input_embeds)
        return input_embeds


    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model
    
    # @torch._dynamo.disable
    def get_rope_index(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Calculate the 3D rope index based on image and video's temporal, height and width in LLM.

        Explanation:
            Each embedding sequence contains vision embedding and text embedding or just contains text embedding.

            For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
            Examples:
                input_ids: [T T T T T], here T is for text.
                temporal position_ids: [0, 1, 2, 3, 4]
                height position_ids: [0, 1, 2, 3, 4]
                width position_ids: [0, 1, 2, 3, 4]

            For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
            and 1D rotary position embedding for text part.
            Examples:
                Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
                input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
                vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
                vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
                vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
                text temporal position_ids: [3, 4, 5, 6, 7]
                text height position_ids: [3, 4, 5, 6, 7]
                text width position_ids: [3, 4, 5, 6, 7]
                Here we calculate the text start position_ids as the max vision position_ids plus 1.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
                it.
            image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
                The temporal, height and width of feature shape of each image in LLM.
            video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
                The temporal, height and width of feature shape of each video in LLM.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

        Returns:
            position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
            mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
        """
        spatial_merge_size = self.config.vision_config.spatial_merge_size
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id
        mrope_position_deltas = []
        if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
            total_input_ids = input_ids
            if attention_mask is None:
                attention_mask = torch.ones_like(total_input_ids)
            position_ids = torch.ones(
                3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
            )
            image_index, video_index = 0, 0
            for i, input_ids in enumerate(total_input_ids):
                input_ids = input_ids[attention_mask[i].to(input_ids.device) == 1]
                image_nums, video_nums = 0, 0
                vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
                #################
                # skip last boi, because last boi do NOT have true image_token
                vision_start_indices = vision_start_indices[vision_start_indices + 1 <len(input_ids)]
                ##############
                vision_tokens = input_ids[vision_start_indices + 1]
                image_nums = (vision_tokens == image_token_id).sum()
                video_nums = (vision_tokens == video_token_id).sum()
                input_tokens = input_ids.tolist()
                llm_pos_ids_list: list = []
                st = 0
                remain_images, remain_videos = image_nums, video_nums
                for _ in range(image_nums + video_nums):
                    if image_token_id in input_tokens and remain_images > 0:
                        ed_image = input_tokens.index(image_token_id, st)
                    else:
                        ed_image = len(input_tokens) + 1
                    if video_token_id in input_tokens and remain_videos > 0:
                        ed_video = input_tokens.index(video_token_id, st)
                    else:
                        ed_video = len(input_tokens) + 1
                    if ed_image < ed_video:
                        t, h, w = (
                            image_grid_thw[image_index][0],
                            image_grid_thw[image_index][1],
                            image_grid_thw[image_index][2],
                        )
                        image_index += 1
                        remain_images -= 1
                        ed = ed_image
                    else:
                        t, h, w = (
                            video_grid_thw[video_index][0],
                            video_grid_thw[video_index][1],
                            video_grid_thw[video_index][2],
                        )
                        video_index += 1
                        remain_videos -= 1
                        ed = ed_video
                    llm_grid_t, llm_grid_h, llm_grid_w = (
                        t.item(),
                        h.item() // spatial_merge_size,
                        w.item() // spatial_merge_size,
                    )
                    text_len = ed - st

                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                    t_index = torch.arange(llm_grid_t).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
                    h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
                    w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
                    llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
                    st = ed + llm_grid_t * llm_grid_h * llm_grid_w

                if st < len(input_tokens):
                    st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
                    text_len = len(input_tokens) - st
                    llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)

                llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
                position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
                mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
            mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
            return position_ids, mrope_position_deltas
        else:
            if attention_mask is not None:
                position_ids = attention_mask.long().cumsum(-1) - 1
                position_ids.masked_fill_(attention_mask == 0, 1)
                position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
                max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
                mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
            else:
                position_ids = (
                    torch.arange(input_ids.shape[1], device=input_ids.device)
                    .view(1, 1, -1)
                    .expand(3, input_ids.shape[0], -1)
                )
                mrope_position_deltas = torch.zeros(
                    [input_ids.shape[0], 1],
                    device=input_ids.device,
                    dtype=input_ids.dtype,
                )

            return position_ids, mrope_position_deltas
        

    # @torch.compile
    def forward_visual(self, pixel_values, grid_thw):
        return self.visual(pixel_values, grid_thw=grid_thw)

    # @torch.compile
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        pixel_values: Optional[torch.Tensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        rope_deltas: Optional[torch.LongTensor] = None,
        cache_position: Optional[torch.LongTensor] = None,
        output_type: Literal["lvlm", "denoise_model_pred", "denoise_embeds"] = "lvlm",
        denoiser_kwargs: Optional[Dict] = {},
        only_use_t5: bool = False,
        vlm_residual_image_factor: float = 0.0, 
        **kwargs,
    ) -> Union[Tuple, Qwen2VLCausalLMOutputWithPast]:
        if not only_use_t5:
            if (
                self.forward_denoiser
            ):  # Force forward denoiser, which is used in FSDP training
                return self.denoise_tower.denoiser(**kwargs)

            if "hidden_states" in kwargs:
                print(
                    "You are using this model as a denoiser, please use the forward_denoiser_context to forward the model."
                )
                print("For example:")
                print("with self.forward_denoiser_context():")
                print("    ... # Your code ...")
            # if isinstance(pixel_values, list):
                # print('pixel_values is list:', *[i.shape for i in pixel_values])
                # pixel_values = torch.cat(pixel_values)
                # print('pixel_values convert to tensor:', pixel_values.shape)
            # if isinstance(image_grid_thw, list):
                # print('image_grid_thw is list:', *[i.shape for i in image_grid_thw])
                # image_grid_thw = torch.cat(image_grid_thw)
                # print('image_grid_thw convert to tensor:', image_grid_thw.shape)
            if inputs_embeds is None:
                inputs_embeds = self.model.embed_tokens(input_ids)
                if pixel_values is not None:
                    pixel_values = pixel_values.type(self.visual.get_dtype())
                    #################################
                    # add these line
                    image_embeds = self.forward_visual(pixel_values, grid_thw=image_grid_thw)
                    
                    if self.config.shortcut_projector_type is not None:
                        shortcut_image_embeds_batch = image_embeds
                    else:
                        shortcut_image_embeds_batch = None
                    #################################
                    n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
                    n_image_features = image_embeds.shape[0]
                    if n_image_tokens != n_image_features:
                        raise ValueError(
                            f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                        )
                    image_mask = (
                        (input_ids == self.config.image_token_id)
                        .unsqueeze(-1)
                        .expand_as(inputs_embeds)
                        .to(inputs_embeds.device)
                    )
                    image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                    inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

                if pixel_values_videos is not None:
                    pixel_values_videos = pixel_values_videos.type(self.visual.get_dtype())
                    video_embeds = self.forward_visual(pixel_values_videos, grid_thw=video_grid_thw)
                    n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
                    n_video_features = video_embeds.shape[0]
                    if n_video_tokens != n_video_features:
                        raise ValueError(
                            f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
                        )
                    video_mask = (
                        (input_ids == self.config.video_token_id)
                        .unsqueeze(-1)
                        .expand_as(inputs_embeds)
                        .to(inputs_embeds.device)
                    )
                    video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
                    inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)

                if attention_mask is not None:
                    attention_mask = attention_mask.to(inputs_embeds.device)

                shortcut_image_embeds = []
                if pixel_values is not None and shortcut_image_embeds_batch is not None:
                    cum_image_len = 0
                    for batch_idx in range(input_ids.shape[0]):
                        cur_input_ids = input_ids[batch_idx]
                        num_blocks, start_end_index, lengths = self.find_true_blocks((cur_input_ids == self.config.image_token_id))
                        for i in range(len(num_blocks)):
                            shortcut_image_embeds.append(
                                (
                                    # batch_idx,
                                    # pos,
                                    # lengths,
                                    # shortcut_image_embeds_batch, 
                                    batch_idx,
                                    start_end_index[i],
                                    lengths[i],
                                    shortcut_image_embeds_batch[cum_image_len: cum_image_len+lengths[i]], 
                                )
                            )
                            cum_image_len = cum_image_len + lengths[i]

            if output_type == "denoise_model_pred":
                assert len(denoiser_kwargs) > 0, (
                    "denoiser_kwargs should not be empty when output_type is denoise_model_pred"
                )
                return_dict = False

            # if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
            if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
                # calculate RoPE index once per generation in the pre-fill stage only
                if (
                    (cache_position is not None and cache_position[0] == 0)
                    or self.rope_deltas is None
                    or (past_key_values is None or past_key_values.get_seq_length() == 0)
                ):
                    position_ids, rope_deltas = self.get_rope_index(
                        input_ids, image_grid_thw, video_grid_thw, attention_mask
                    )
                    self.rope_deltas = rope_deltas
                # then use the prev pre-calculated rope-deltas to get the correct position ids
                else:
                    batch_size, seq_length, _ = inputs_embeds.shape
                    delta = cache_position[0] + self.rope_deltas if cache_position is not None else 0
                    position_ids = torch.arange(seq_length, device=inputs_embeds.device)
                    position_ids = position_ids.view(1, -1).expand(batch_size, -1)
                    if cache_position is not None:  # otherwise `deltas` is an int `0`
                        delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
                        delta = delta.to(position_ids.device)
                    position_ids = position_ids.add(delta)
                    position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)

            outputs = self.model(
                input_ids=None,
                position_ids=position_ids,
                attention_mask=attention_mask,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                cache_position=cache_position,
            )
        
            hidden_states = outputs[0]
            
            
            if output_type.startswith("denoise"):
                outputs = outputs[0]
        else:
            outputs = None

        if output_type.startswith("denoise"):
            if outputs is not None and vlm_residual_image_factor > 0.0 and pixel_values is not None:
                old = outputs[image_mask[:, :, 0]]            # shape [N, D]
                blended = old * (1 - vlm_residual_image_factor) + image_embeds * vlm_residual_image_factor  # shape [N, D]
                outputs = outputs.masked_scatter(image_mask, blended)
            if outputs is not None and shortcut_image_embeds is not None and self.config.shortcut_image_embeds:
                for (
                    batch_idx,
                    pos,
                    image_seq_length,
                    image_embeds_item,
                ) in shortcut_image_embeds:
                    outputs[batch_idx, pos : pos + image_seq_length, :] = (
                        self.config.shortcut_image_embeds_scale * image_embeds_item
                        + (1 - self.config.shortcut_image_embeds_scale)
                        * outputs[batch_idx, pos : pos + image_seq_length, :]
                    )

            ref_features_for_vlm = kwargs.pop('ref_features_for_vlm', None)
            siglip_hidden_states = kwargs.pop('siglip_hidden_states', None)
            if outputs is not None:
                outputs = self.denoise_tower.denoise_projector(outputs)
                if ref_features_for_vlm is not None:
                    outputs_ref_features = self.denoise_tower.vae_projector(ref_features_for_vlm)
                    outputs = torch.cat([outputs, outputs_ref_features], dim=1)
                if siglip_hidden_states is not None:
                    siglip_hidden_states = self.denoise_tower.siglip_projector(siglip_hidden_states)
                    indices_list = self.find_all_token_positions(input_ids, self.config.image_end_token_id)
                    # import ipdb;ipdb.set_trace()
                    outputs = self._insert_img_to_vlm(outputs, siglip_hidden_states, indices_list)
                    # print(outputs.shape)
                

            if output_type == "denoise_embeds":
                # LVLM outputs -> MLP2 -> prompt_embeds
                # with prompt_embeds, we can directly forward the denoiser.
                return outputs
            elif output_type == "denoise_model_pred":
                # LM outputs -> MLP2 -> Denoiser -> model_pred
                return self.forward_denoise_tower(
                    outputs, **denoiser_kwargs
                )
            else:
                raise ValueError(f"Unknown output_type: {output_type}.")

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Upcast to float if we need to compute the loss to avoid potential precision issues
            logits = logits.float()
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        outputs = Qwen2VLCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            rope_deltas=self.rope_deltas,
        )
        return outputs
    
    def forward_denoise_tower(self, outputs, **denoiser_kwargs):
        return self.denoise_tower(
            encoder_hidden_states=outputs, **denoiser_kwargs
        )

    def find_all_token_positions(self, input_ids, token_id):
        """
        返回一个列表,列表中每个元素是该 batch 中对应样本中 token_id 出现的位置索引(1D Tensor)
        """
        match = (input_ids == token_id)  # [B, L] 的 bool 矩阵
        batch_indices, seq_indices = torch.where(match)  # 都是 1D,长度为匹配总数

        # 构建一个列表:每个样本一个 Tensor,记录匹配位置
        batch_size = input_ids.size(0)
        result = [[] for _ in range(batch_size)]
        for b, s in zip(batch_indices.tolist(), seq_indices.tolist()):
            result[b].append(s)
        return result

    def find_true_blocks(self, tensor):
        tensor = tensor.bool()
        # pad左右两边,方便处理边界
        padded = torch.nn.functional.pad(tensor[None].float(), (1, 1))  # 1D tensor -> shape (1, L+2)
        diff = padded[:, 1:] - padded[:, :-1]  # shape (1, L+1)

        # +1 表示从 False -> True(块开始),-1 表示从 True -> False(块结束)
        starts = (diff == 1).nonzero(as_tuple=True)[1]
        ends = (diff == -1).nonzero(as_tuple=True)[1] - 1  # 结束 index 是最后一个 True 的位置

        lengths = ends - starts + 1
        num_blocks = starts.numel()
        return num_blocks, list(zip(starts, ends)), lengths

    def forward_denoiser_context(self):
        class ForwardDenoiserContext:
            def __init__(self, model):
                self.model = model
                self.backup_config = None

            def __enter__(self):
                self.backup_config = self.model.config
                self.model.config = self.model.denoise_tower.denoiser.config
                self.model.forward_denoiser = True
                return self.model

            def __exit__(self, exc_type, exc_val, exc_tb):
                self.model.forward_denoiser = False
                self.model.config = self.backup_config
                return False

        return ForwardDenoiserContext(self)

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        position_ids=None,
        use_cache=True,
        pixel_values=None,
        pixel_values_videos=None,
        image_grid_thw=None,
        video_grid_thw=None,
        **kwargs,
    ):
        # Overwritten -- in specific circumstances we don't want to forward image inputs to the model

        model_inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            cache_position=cache_position,
            position_ids=position_ids,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            use_cache=use_cache,
            **kwargs,
        )

        # Qwen2-VL position_ids are prepareed with rope_deltas in forward
        model_inputs["position_ids"] = None

        if model_inputs["cache_position"][0] != 0:
            model_inputs["pixel_values"] = None
            model_inputs["pixel_values_videos"] = None

        return model_inputs
    
    def _insert_img_to_vlm(self, vlm_feature, img_feature, indices_list):
        B, L, D = vlm_feature.shape
        assert img_feature.ndim == 3
        img_L = img_feature.shape[1]
        max_new_len = max([L+img_L*len(inds) for inds in indices_list])

        new_vlm_feature = torch.zeros(B, max_new_len, D, dtype=vlm_feature.dtype, device=vlm_feature.device)

        img_mask = torch.zeros((B, max_new_len, 1), dtype=torch.bool, device=vlm_feature.device)
        for i, inds in enumerate(indices_list):
            for j, pos in enumerate(inds):
                # print(i, f'{j*img_L + pos} -> {(j+1)*img_L + pos}')
                img_mask[i, j*img_L + pos: (j+1)*img_L + pos] = True

        vlm_mask = ~img_mask
        for i, inds in enumerate(indices_list):
            # print(i, f'{L+img_L*len(inds)}')
            vlm_mask[i, L+img_L*len(inds): ] = False

        img_mask = img_mask.repeat(1, 1, D)
        assert torch.sum(img_mask) == img_feature.numel()
        new_vlm_feature.masked_scatter_(img_mask, img_feature)

        vlm_mask = vlm_mask.repeat(1, 1, D)
        assert torch.sum(vlm_mask) == vlm_feature.numel()
        new_vlm_feature.masked_scatter_(vlm_mask, vlm_feature.view(-1, D))
        return new_vlm_feature

    def _get_image_nums_and_video_nums(
        self,
        input_ids: Optional[torch.LongTensor],
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
        These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary.

        Returns:
            image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
            video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
        """
        image_token_id = self.config.image_token_id
        video_token_id = self.config.video_token_id
        vision_start_token_id = self.config.vision_start_token_id

        vision_start_mask = input_ids == vision_start_token_id
        vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
        image_mask = input_ids == image_token_id
        video_mask = input_ids == video_token_id
        image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
        video_nums = torch.sum(vision_first_mask & video_mask, dim=1)

        return image_nums, video_nums

    def _expand_inputs_for_generation(
        self,
        expand_size: int = 1,
        is_encoder_decoder: bool = False,
        input_ids: Optional[torch.LongTensor] = None,
        **model_kwargs,
    ) -> Tuple[torch.LongTensor, Dict[str, Any]]:
        # Overwritten -- Support for expanding tensors without a batch size dimension
        # e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
        # pixel_values.shape[0] is sum(seqlen_images for samples)
        # image_grid_thw.shape[0] is sum(num_images for samples)

        if expand_size == 1:
            return input_ids, model_kwargs

        visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]

        def _expand_dict_for_generation_visual(dict_to_expand):
            image_grid_thw = model_kwargs.get("image_grid_thw", None)
            video_grid_thw = model_kwargs.get("video_grid_thw", None)
            image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids)

            def _repeat_interleave_samples(x, lengths, repeat_times):
                samples = torch.split(x, lengths)
                repeat_args = [repeat_times] + [1] * (x.dim() - 1)
                result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
                return result

            for key in dict_to_expand:
                if key == "pixel_values":
                    # split images into samples
                    samples = torch.split(image_grid_thw, list(image_nums))
                    # compute the sequence length of images for each sample
                    lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "image_grid_thw":
                    # get the num of images for each sample
                    lengths = list(image_nums)
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "pixel_values_videos":
                    samples = torch.split(video_grid_thw, list(video_nums))
                    lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "video_grid_thw":
                    lengths = list(video_nums)
                    dict_to_expand[key] = _repeat_interleave_samples(
                        dict_to_expand[key], lengths=lengths, repeat_times=expand_size
                    )
                elif key == "second_per_grid_ts":
                    if not isinstance(dict_to_expand[key], list):
                        raise TypeError(
                            f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead."
                        )
                    tensor = torch.tensor(dict_to_expand[key])
                    lengths = list(video_nums)
                    tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size)
                    dict_to_expand[key] = tensor.tolist()
            return dict_to_expand

        def _expand_dict_for_generation(dict_to_expand):
            for key in dict_to_expand:
                if (
                    key != "cache_position"
                    and dict_to_expand[key] is not None
                    and isinstance(dict_to_expand[key], torch.Tensor)
                    and key not in visual_keys
                ):
                    dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
            return dict_to_expand

        # input_ids is required for expanding visual inputs
        # If input_ids is unavailable, visual inputs will not be used; therefore, there is no need to expand visual inputs.
        if input_ids is not None and input_ids.numel() != 0:
            model_kwargs = _expand_dict_for_generation_visual(model_kwargs)

        if input_ids is not None:
            input_ids = input_ids.repeat_interleave(expand_size, dim=0)

        model_kwargs = _expand_dict_for_generation(model_kwargs)

        if is_encoder_decoder:
            if model_kwargs.get("encoder_outputs") is None:
                raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
            model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])

        return input_ids, model_kwargs


# __all__ = ["Qwen2VLForConditionalGeneration", "Qwen2VLModel", "Qwen2VLPreTrainedModel"]