UniWorld-V1 / univa /eval /geneval /step1_gen_samples.py
LinB203
init
0c8d55e
import sys
import os
root = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "..", ".."))
sys.path.append(root)
import json
import torch
import random
import subprocess
import numpy as np
import torch.distributed as dist
import pandas as pd
import argparse
import torch
import os
from PIL import Image
from tqdm import tqdm
import torch.distributed as dist
from qwen_vl_utils import process_vision_info
from torchvision import transforms
from transformers import AutoProcessor
from transformers import SiglipImageProcessor, SiglipVisionModel
from univa.utils.flux_pipeline import FluxPipeline
from univa.eval.configuration_eval import EvalConfig
from univa.utils.get_ocr import get_ocr_result
from univa.utils.denoiser_prompt_embedding_flux import encode_prompt
from univa.models.qwen2p5vl.modeling_univa_qwen2p5vl import UnivaQwen2p5VLForConditionalGeneration
# adapted from https://github.com/huggingface/accelerate/blob/main/src/accelerate/utils/random.py#L31
def set_seed(seed, rank, device_specific=True):
if device_specific:
seed += rank
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def initialize_models(args, device):
# Load main model and task head
model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
args.pretrained_lvlm_name_or_path,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).to(device)
processor = AutoProcessor.from_pretrained(
args.pretrained_lvlm_name_or_path,
min_pixels=args.min_pixels,
max_pixels=args.max_pixels,
)
# Load FLUX pipeline
pipe = FluxPipeline.from_pretrained(
args.pretrained_denoiser_name_or_path,
transformer=model.denoise_tower.denoiser,
torch_dtype=torch.bfloat16,
).to(device)
tokenizers = [pipe.tokenizer, pipe.tokenizer_2]
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
siglip_processor = SiglipImageProcessor.from_pretrained(args.pretrained_siglip_name_or_path)
siglip_model = SiglipVisionModel.from_pretrained(
args.pretrained_siglip_name_or_path,
torch_dtype=torch.bfloat16,
).to(device)
return {
'model': model,
'processor': processor,
'pipe': pipe,
'tokenizers': tokenizers,
'text_encoders': text_encoders,
'device': device,
'siglip_model': siglip_model,
'siglip_processor': siglip_processor,
}
def init_gpu_env(args):
local_rank = int(os.getenv('RANK', 0))
world_size = int(os.getenv('WORLD_SIZE', 1))
args.local_rank = local_rank
args.world_size = world_size
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend='nccl', init_method='env://',
world_size=world_size, rank=local_rank
)
return args
def run_model_and_return_samples(args, state, text, image1=None, image2=None):
# Build content
convo = []
image_paths = []
content = []
for img in (image1, image2):
if img:
content.append({'type':'image','image':img,'min_pixels':args.min_pixels,'max_pixels':args.max_pixels})
image_paths.append(img)
if text:
ocr_text = ''
if args.ocr_enhancer and content:
ocr_texts = []
for img in (image1, image2):
if img:
ocr_texts.append(get_ocr_result(img, cur_ocr_i))
cur_ocr_i += 1
ocr_text = '\n'.join(ocr_texts)
content.append({'type':'text','text': text + ocr_text})
if not args.only_use_t5:
convo.append({'role':'user','content':content})
# Prepare inputs
chat_text = state['processor'].apply_chat_template(
convo,
tokenize=False,
add_generation_prompt=True
)
chat_text = '<|im_end|>\n'.join(chat_text.split('<|im_end|>\n')[1:])
image_inputs, video_inputs = process_vision_info(convo)
inputs = state['processor'](
text=[chat_text], images=image_inputs, videos=video_inputs,
padding=True, return_tensors='pt'
).to(state['device'])
# Generate
# image generation pipeline
siglip_hs = None
if state['siglip_processor'] and image_paths:
vals = [state['siglip_processor'].preprocess(
images=Image.open(p).convert('RGB'), do_resize=True,
return_tensors='pt', do_convert_rgb=True
).pixel_values.to(state['device'])
for p in image_paths]
siglip_hs = state['siglip_model'](torch.concat(vals)).last_hidden_state
with torch.no_grad():
lvlm = state['model'](
inputs.input_ids, pixel_values=getattr(inputs,'pixel_values',None),
attention_mask=inputs.attention_mask,
image_grid_thw=getattr(inputs,'image_grid_thw',None),
siglip_hidden_states=siglip_hs,
output_type='denoise_embeds'
)
prm_embeds, pooled = encode_prompt(
state['text_encoders'], state['tokenizers'],
text if args.joint_with_t5 else '', 512, state['device'], 1
)
emb = torch.concat([lvlm, prm_embeds], dim=1) if args.joint_with_t5 else lvlm
else:
prm_embeds, pooled = encode_prompt(
state['text_encoders'], state['tokenizers'],
text, 512, state['device'], 1
)
emb = prm_embeds
with torch.no_grad():
img = state['pipe'](
prompt_embeds=emb,
pooled_prompt_embeds=pooled,
height=args.height,
width=args.width,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
num_images_per_prompt=args.num_images_per_prompt,
).images
return img
def main(args):
args = init_gpu_env(args)
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
set_seed(args.seed, rank=args.local_rank, device_specific=True)
device = torch.cuda.current_device()
state = initialize_models(args, device)
# Create the output directory if it doesn't exist
os.makedirs(args.output_dir, exist_ok=True)
# Load the evaluation prompts
with open(args.geneval_prompt_path, "r") as f:
metadatas = [json.loads(line) for line in f]
inference_list = []
for index, metadata in enumerate(metadatas):
outpath = os.path.join(args.output_dir, f"{index:0>5}")
os.makedirs(outpath, exist_ok=True)
prompt = metadata["prompt"]
print(f"Prompt ({index: >3}/{len(metadatas)}): '{prompt}'")
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
with open(os.path.join(outpath, "metadata.jsonl"), "w") as fp:
json.dump(metadata, fp)
all_samples = list()
for idx, n in enumerate(range(args.n_samples)):
inference_list.append([prompt, sample_path, idx])
inference_list = inference_list[args.local_rank::args.world_size]
for prompt, sample_path, sample_count in tqdm(inference_list):
if os.path.exists(os.path.join(sample_path, f"{sample_count:05}.png")):
continue
image = run_model_and_return_samples(args, state, prompt, image1=None, image2=None)
image = image[0]
image = image.resize((args.resized_width, args.resized_height))
# Save image
image.save(
os.path.join(sample_path, f"{sample_count:05}.png")
)
if __name__ == "__main__":
import argparse
from omegaconf import OmegaConf
parser = argparse.ArgumentParser()
parser.add_argument("config", type=str)
parser.add_argument("--pretrained_lvlm_name_or_path", type=str, default=None, required=False)
parser.add_argument("--output_dir", type=str, default=None, required=False)
args = parser.parse_args()
config = OmegaConf.load(args.config)
schema = OmegaConf.structured(EvalConfig)
conf = OmegaConf.merge(schema, config)
if args.pretrained_lvlm_name_or_path is not None:
assert args.output_dir is not None
conf.pretrained_lvlm_name_or_path = args.pretrained_lvlm_name_or_path
conf.output_dir = args.output_dir
main(conf)