UniWorld-V1 / univa /models /qwen2p5vl /modeling_univa_qwen2p5vl.py
LinB203
init
0c8d55e
from typing import Optional, List, Tuple, Union, Literal, Dict
import copy
import math
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss
from transformers import GenerationMixin
from transformers.modeling_utils import restore_default_torch_dtype
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import (
Qwen2_5_VLModel,
Qwen2_5_VLPreTrainedModel,
Qwen2_5_VisionTransformerPretrainedModel,
Qwen2_5_VLCausalLMOutputWithPast
)
from univa.models.qwen2p5vl.configuration_univa_qwen2p5vl import UnivaQwen2p5VLConfig
from univa.models.modeling_univa_denoise_tower import UnivaDenoiseTower
from torch.utils.checkpoint import checkpoint
class UnivaQwen2p5VLModel(Qwen2_5_VLModel):
def __init__(self, config: UnivaQwen2p5VLConfig):
super().__init__(config)
self.config = config
class UnivaQwen2p5VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
config_class = UnivaQwen2p5VLConfig
def __init__(self, config: UnivaQwen2p5VLConfig):
super().__init__(config)
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(config.vision_config)
print("visual init done")
self.model = UnivaQwen2p5VLModel(config)
print("model init done")
self.denoise_tower = UnivaDenoiseTower(config.denoise_tower)
print("denoise tower init done")
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.rope_deltas = None # cache rope_deltas here
self.forward_denoiser = False
# Initialize weights and apply final processing
self.post_init()
@classmethod
@restore_default_torch_dtype
def from_config(cls, config, **kwargs):
"""
All context managers that the model should be initialized under go here.
Args:
torch_dtype (`torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model under this dtype.
"""
# when we init a model from within another model (e.g. VLMs) and dispatch on FA2
# a warning is raised that dtype should be fp16. Since we never pass dtype from within
# modeling code, we can try to infer it here same way as done in `from_pretrained`
torch_dtype = kwargs.pop("torch_dtype", config.torch_dtype)
if isinstance(torch_dtype, str):
torch_dtype = getattr(torch, torch_dtype)
use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
# override default dtype if needed
dtype_orig = None
if torch_dtype is not None:
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
config = copy.deepcopy(config) # We do not want to modify the config inplace in _from_config.
if config._attn_implementation_internal is not None:
# In this case, the config has been created with the attn_implementation set by the user, which we
# should respect.
attn_implementation = config._attn_implementation_internal
else:
attn_implementation = None
config._attn_implementation = kwargs.pop("attn_implementation", attn_implementation)
if not getattr(config, "_attn_implementation_autoset", False):
config = cls._autoset_attn_implementation(
config,
use_flash_attention_2=use_flash_attention_2,
check_device_map=False,
torch_dtype=torch_dtype,
)
# if is_deepspeed_zero3_enabled() and not _is_quantized and not _is_ds_init_called:
# import deepspeed
# logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
# # this immediately partitions the model across all gpus, to avoid the overhead in time
# # and memory copying it on CPU or each GPU first
# init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config()), set_zero3_state()]
# with ContextManagers(init_contexts):
# model = cls(config, **kwargs)
# else:
model = cls(config, **kwargs)
# restore default dtype if it was modified
if dtype_orig is not None:
torch.set_default_dtype(dtype_orig)
return model
def get_denoise_embeds(
self,
input_ids: torch.LongTensor,
images: Optional[List[torch.FloatTensor]] = None,
image_position: Optional[torch.LongTensor] = None,
):
input_embeds = self(input_ids, images, image_position)[0]
input_embeds = self.denoise_tower(input_embeds)
return input_embeds
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
# @torch._dynamo.disable
def get_rope_index(
self,
input_ids: Optional[torch.LongTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
Explanation:
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
Examples:
input_ids: [T T T T T], here T is for text.
temporal position_ids: [0, 1, 2, 3, 4]
height position_ids: [0, 1, 2, 3, 4]
width position_ids: [0, 1, 2, 3, 4]
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
and 1D rotary position embedding for text part.
Examples:
Temporal (Time): 3 patches, representing different segments of the video in time.
Height: 2 patches, dividing each frame vertically.
Width: 2 patches, dividing each frame horizontally.
We also have some important parameters:
fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
text temporal position_ids: [101, 102, 103, 104, 105]
text height position_ids: [101, 102, 103, 104, 105]
text width position_ids: [101, 102, 103, 104, 105]
Here we calculate the text start position_ids as the max vision position_ids plus 1.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
The temporal, height and width of feature shape of each image in LLM.
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
The temporal, height and width of feature shape of each video in LLM.
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
Returns:
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
"""
spatial_merge_size = self.config.vision_config.spatial_merge_size
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
mrope_position_deltas = []
if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
total_input_ids = input_ids
if attention_mask is None:
attention_mask = torch.ones_like(total_input_ids)
position_ids = torch.ones(
3,
input_ids.shape[0],
input_ids.shape[1],
dtype=input_ids.dtype,
device=input_ids.device,
)
image_index, video_index = 0, 0
attention_mask = attention_mask.to(total_input_ids.device)
for i, input_ids in enumerate(total_input_ids):
input_ids = input_ids[attention_mask[i] == 1]
image_nums, video_nums = 0, 0
vision_start_indices = torch.argwhere(input_ids == vision_start_token_id).squeeze(1)
#################
# skip last boi, because last boi do NOT have true image_token
vision_start_indices = vision_start_indices[vision_start_indices + 1 <len(input_ids)]
##############
vision_tokens = input_ids[vision_start_indices + 1]
image_nums = (vision_tokens == image_token_id).sum()
video_nums = (vision_tokens == video_token_id).sum()
input_tokens = input_ids.tolist()
llm_pos_ids_list: list = []
st = 0
remain_images, remain_videos = image_nums, video_nums
for _ in range(image_nums + video_nums):
if image_token_id in input_tokens and remain_images > 0:
ed_image = input_tokens.index(image_token_id, st)
else:
ed_image = len(input_tokens) + 1
if video_token_id in input_tokens and remain_videos > 0:
ed_video = input_tokens.index(video_token_id, st)
else:
ed_video = len(input_tokens) + 1
if ed_image < ed_video:
t, h, w = (
image_grid_thw[image_index][0],
image_grid_thw[image_index][1],
image_grid_thw[image_index][2],
)
second_per_grid_t = 0
image_index += 1
remain_images -= 1
ed = ed_image
else:
t, h, w = (
video_grid_thw[video_index][0],
video_grid_thw[video_index][1],
video_grid_thw[video_index][2],
)
if second_per_grid_ts is not None:
second_per_grid_t = second_per_grid_ts[video_index]
else:
second_per_grid_t = 1.0
video_index += 1
remain_videos -= 1
ed = ed_video
llm_grid_t, llm_grid_h, llm_grid_w = (
t.item(),
h.item() // spatial_merge_size,
w.item() // spatial_merge_size,
)
text_len = ed - st
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second
time_tensor_long = time_tensor.long()
t_index = time_tensor_long.flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + text_len + st_idx)
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
if st < len(input_tokens):
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
text_len = len(input_tokens) - st
llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
return position_ids, mrope_position_deltas
else:
if attention_mask is not None:
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
else:
position_ids = (
torch.arange(input_ids.shape[1], device=input_ids.device)
.view(1, 1, -1)
.expand(3, input_ids.shape[0], -1)
)
mrope_position_deltas = torch.zeros(
[input_ids.shape[0], 1],
device=input_ids.device,
dtype=input_ids.dtype,
)
return position_ids, mrope_position_deltas
# @torch.compile
def forward_visual(self, pixel_values, grid_thw):
return self.visual(pixel_values, grid_thw=grid_thw)
# @torch.compile
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
pixel_values: Optional[torch.Tensor] = None,
pixel_values_videos: Optional[torch.FloatTensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
rope_deltas: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
second_per_grid_ts: Optional[torch.Tensor] = None,
output_type: Literal["lvlm", "denoise_model_pred", "denoise_embeds"] = "lvlm",
denoiser_kwargs: Optional[Dict] = {},
only_use_t5: bool = False,
vlm_residual_image_factor: float = 0.0,
**kwargs,
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
if not only_use_t5:
if (
self.forward_denoiser
): # Force forward denoiser, which is used in FSDP training
return self.denoise_tower.denoiser(**kwargs)
if "hidden_states" in kwargs:
print(
"You are using this model as a denoiser, please use the forward_denoiser_context to forward the model."
)
print("For example:")
print("with self.forward_denoiser_context():")
print(" ... # Your code ...")
# if isinstance(pixel_values, list):
# print('pixel_values is list:', *[i.shape for i in pixel_values])
# pixel_values = torch.cat(pixel_values)
# print('pixel_values convert to tensor:', pixel_values.shape)
# if isinstance(image_grid_thw, list):
# print('image_grid_thw is list:', *[i.shape for i in image_grid_thw])
# image_grid_thw = torch.cat(image_grid_thw)
# print('image_grid_thw convert to tensor:', image_grid_thw.shape)
if inputs_embeds is None:
inputs_embeds = self.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.type(self.visual.dtype)
#################################
# add these line
image_embeds = self.forward_visual(pixel_values, grid_thw=image_grid_thw)
if self.config.shortcut_projector_type is not None:
shortcut_image_embeds_batch = image_embeds
else:
shortcut_image_embeds_batch = None
#################################
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
n_image_features = image_embeds.shape[0]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
mask = input_ids == self.config.image_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
image_mask = mask_expanded.to(inputs_embeds.device)
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
if pixel_values_videos is not None:
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
video_embeds = self.forward_visual(pixel_values_videos, grid_thw=video_grid_thw)
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
n_video_features = video_embeds.shape[0]
if n_video_tokens != n_video_features:
raise ValueError(
f"Video features and video tokens do not match: tokens: {n_video_tokens}, features {n_video_features}"
)
mask = input_ids == self.config.video_token_id
mask_unsqueezed = mask.unsqueeze(-1)
mask_expanded = mask_unsqueezed.expand_as(inputs_embeds)
video_mask = mask_expanded.to(inputs_embeds.device)
video_embeds = video_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
if attention_mask is not None:
attention_mask = attention_mask.to(inputs_embeds.device)
shortcut_image_embeds = []
if pixel_values is not None and shortcut_image_embeds_batch is not None:
cum_image_len = 0
for batch_idx in range(input_ids.shape[0]):
cur_input_ids = input_ids[batch_idx]
num_blocks, start_end_index, lengths = self.find_true_blocks((cur_input_ids == self.config.image_token_id))
for i in range(len(num_blocks)):
shortcut_image_embeds.append(
(
# batch_idx,
# pos,
# lengths,
# shortcut_image_embeds_batch,
batch_idx,
start_end_index[i],
lengths[i],
shortcut_image_embeds_batch[cum_image_len: cum_image_len+lengths[i]],
)
)
cum_image_len = cum_image_len + lengths[i]
if output_type == "denoise_model_pred":
assert len(denoiser_kwargs) > 0, (
"denoiser_kwargs should not be empty when output_type is denoise_model_pred"
)
return_dict = False
# if we get 4D attention mask we cannot calculate rope deltas anymore. TODO @raushan fixme
if position_ids is None and (attention_mask is None or attention_mask.ndim == 2):
# calculate RoPE index once per generation in the pre-fill stage only
if (
(cache_position is not None and cache_position[0] == 0)
or self.rope_deltas is None
or (past_key_values is None or past_key_values.get_seq_length() == 0)
):
position_ids, rope_deltas = self.get_rope_index(
input_ids,
image_grid_thw,
video_grid_thw,
second_per_grid_ts,
attention_mask,
)
self.rope_deltas = rope_deltas
# then use the prev pre-calculated rope-deltas to get the correct position ids
else:
batch_size, seq_length, _ = inputs_embeds.shape
delta = (
(cache_position[0] + self.rope_deltas).to(inputs_embeds.device)
if cache_position is not None
else 0
)
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
position_ids = position_ids.view(1, -1).expand(batch_size, -1)
if cache_position is not None: # otherwise `deltas` is an int `0`
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
position_ids = position_ids.add(delta)
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
outputs = self.model(
input_ids=None,
position_ids=position_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
if output_type.startswith("denoise"):
outputs = outputs[0]
else:
outputs = None
if output_type.startswith("denoise"):
if outputs is not None and vlm_residual_image_factor > 0.0 and pixel_values is not None:
old = outputs[image_mask[:, :, 0]] # shape [N, D]
blended = old * (1 - vlm_residual_image_factor) + image_embeds * vlm_residual_image_factor # shape [N, D]
outputs = outputs.masked_scatter(image_mask, blended)
if outputs is not None and shortcut_image_embeds is not None and self.config.shortcut_image_embeds:
for (
batch_idx,
pos,
image_seq_length,
image_embeds_item,
) in shortcut_image_embeds:
outputs[batch_idx, pos : pos + image_seq_length, :] = (
self.config.shortcut_image_embeds_scale * image_embeds_item
+ (1 - self.config.shortcut_image_embeds_scale)
* outputs[batch_idx, pos : pos + image_seq_length, :]
)
ref_features_for_vlm = kwargs.pop('ref_features_for_vlm', None)
siglip_hidden_states = kwargs.pop('siglip_hidden_states', None)
if outputs is not None:
# outputs = self.denoise_tower.denoise_projector(outputs)
outputs = self.denoise_tower.denoise_projector(outputs)
if ref_features_for_vlm is not None:
# outputs_ref_features = self.denoise_tower.vae_projector(ref_features_for_vlm)
outputs_ref_features = self.denoise_tower.vae_projector(ref_features_for_vlm)
outputs = torch.cat([outputs, outputs_ref_features], dim=1)
if siglip_hidden_states is not None:
# siglip_hidden_states = self.denoise_tower.siglip_projector(siglip_hidden_states)
siglip_hidden_states = self.denoise_tower.siglip_projector(siglip_hidden_states)
indices_list = self.find_all_token_positions(input_ids, self.config.image_end_token_id)
# import ipdb;ipdb.set_trace()
outputs, attention_mask = self._insert_img_to_vlm(outputs, attention_mask, siglip_hidden_states, indices_list)
# print(outputs.shape)
if output_type == "denoise_embeds":
# LVLM outputs -> MLP2 -> prompt_embeds
# with prompt_embeds, we can directly forward the denoiser.
return outputs
elif output_type == "denoise_model_pred":
# LM outputs -> MLP2 -> Denoiser -> model_pred
denoiser_kwargs['enc_attention_mask'] = attention_mask
return self.forward_denoise_tower(
outputs, **denoiser_kwargs
)
else:
raise ValueError(f"Unknown output_type: {output_type}.")
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return Qwen2_5_VLCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
rope_deltas=self.rope_deltas,
)
def forward_denoise_tower(self, outputs, **denoiser_kwargs):
return self.denoise_tower(
encoder_hidden_states=outputs, **denoiser_kwargs
)
# @torch._dynamo.disable
def find_all_token_positions(self, input_ids, token_id):
"""
返回一个列表,列表中每个元素是该 batch 中对应样本中 token_id 出现的位置索引(1D Tensor)
"""
match = (input_ids == token_id) # [B, L] 的 bool 矩阵
batch_indices, seq_indices = torch.where(match) # 都是 1D,长度为匹配总数
# 构建一个列表:每个样本一个 Tensor,记录匹配位置
batch_size = input_ids.size(0)
result = [[] for _ in range(batch_size)]
for b, s in zip(batch_indices.tolist(), seq_indices.tolist()):
result[b].append(s)
return result
def find_true_blocks(self, tensor):
tensor = tensor.bool()
# pad左右两边,方便处理边界
padded = torch.nn.functional.pad(tensor[None].float(), (1, 1)) # 1D tensor -> shape (1, L+2)
diff = padded[:, 1:] - padded[:, :-1] # shape (1, L+1)
# +1 表示从 False -> True(块开始),-1 表示从 True -> False(块结束)
starts = (diff == 1).nonzero(as_tuple=True)[1]
ends = (diff == -1).nonzero(as_tuple=True)[1] - 1 # 结束 index 是最后一个 True 的位置
lengths = ends - starts + 1
num_blocks = starts.numel()
return num_blocks, list(zip(starts, ends)), lengths
def forward_denoiser_context(self):
class ForwardDenoiserContext:
def __init__(self, model):
self.model = model
self.backup_config = None
def __enter__(self):
self.backup_config = self.model.config
self.model.config = self.model.denoise_tower.denoiser.config
self.model.forward_denoiser = True
return self.model
def __exit__(self, exc_type, exc_val, exc_tb):
self.model.forward_denoiser = False
self.model.config = self.backup_config
return False
return ForwardDenoiserContext(self)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
pixel_values=None,
pixel_values_videos=None,
image_grid_thw=None,
video_grid_thw=None,
second_per_grid_ts=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
pixel_values=pixel_values,
pixel_values_videos=pixel_values_videos,
image_grid_thw=image_grid_thw,
video_grid_thw=video_grid_thw,
second_per_grid_ts=second_per_grid_ts,
use_cache=use_cache,
**kwargs,
)
# Qwen2-5-VL position_ids are prepareed with rope_deltas in forward
model_inputs["position_ids"] = None
if cache_position[0] != 0:
model_inputs["pixel_values"] = None
model_inputs["pixel_values_videos"] = None
return model_inputs
@staticmethod
def _insert_img_to_vlm(vlm_feature, attention_mask, img_feature, indices_list):
B, L, D = vlm_feature.shape
assert img_feature.ndim == 3
img_L = img_feature.shape[1]
max_new_len = max([L+img_L*len(inds) for inds in indices_list])
new_vlm_feature = torch.zeros(B, max_new_len, D, dtype=vlm_feature.dtype, device=vlm_feature.device)
img_mask = torch.zeros((B, max_new_len, 1), dtype=torch.bool, device=vlm_feature.device)
for i, inds in enumerate(indices_list):
diff = max_new_len - L - len(inds) * img_L
for j, pos in enumerate(inds):
# print(i, f'{diff + j*img_L + pos} -> {diff + (j+1)*img_L + pos}')
img_mask[i, diff + j*img_L + pos: diff + (j+1)*img_L + pos] = True
vlm_mask = ~img_mask
for i, inds in enumerate(indices_list):
# print(i, f'{max_new_len-L-img_L*len(inds)}')
vlm_mask[i, :max_new_len-L-img_L*len(inds)] = False
if attention_mask is not None:
attention_mask = torch.cat(
[
torch.zeros(
(attention_mask.shape[0], max_new_len-L),
device=attention_mask.device, dtype=attention_mask.dtype
),
attention_mask
], dim=-1
)
img_mask = img_mask.repeat(1, 1, D)
assert torch.sum(img_mask) == img_feature.numel()
new_vlm_feature.masked_scatter_(img_mask, img_feature)
vlm_mask = vlm_mask.repeat(1, 1, D)
assert torch.sum(vlm_mask) == vlm_feature.numel()
new_vlm_feature.masked_scatter_(vlm_mask, vlm_feature.view(-1, D))
return new_vlm_feature, attention_mask
def _get_image_nums_and_video_nums(
self,
input_ids: Optional[torch.LongTensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Get the number of images and videos for each sample to calculate the separation length of the sample tensor.
These parameters are not passed through the processor to avoid unpredictable impacts from interface modifications.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Returns:
image_nums (`torch.LongTensor` of shape `(batch_size, num_images_sample)`)
video_nums (`torch.LongTensor` of shape `(batch_size, num_videos_sample)`)
"""
image_token_id = self.config.image_token_id
video_token_id = self.config.video_token_id
vision_start_token_id = self.config.vision_start_token_id
vision_start_mask = input_ids == vision_start_token_id
vision_first_mask = torch.roll(vision_start_mask, shifts=1, dims=1)
image_mask = input_ids == image_token_id
video_mask = input_ids == video_token_id
image_nums = torch.sum(vision_first_mask & image_mask, dim=1)
video_nums = torch.sum(vision_first_mask & video_mask, dim=1)
return image_nums, video_nums
def _expand_inputs_for_generation(
self,
expand_size: int = 1,
is_encoder_decoder: bool = False,
input_ids: Optional[torch.LongTensor] = None,
**model_kwargs,
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
# Overwritten -- Support for expanding tensors without a batch size dimension
# e.g., pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw, second_per_grid_t
# pixel_values.shape[0] is sum(seqlen_images for samples)
# image_grid_thw.shape[0] is sum(num_images for samples)
if expand_size == 1:
return input_ids, model_kwargs
visual_keys = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw", "second_per_grid_ts"]
def _expand_dict_for_generation_visual(dict_to_expand):
image_grid_thw = model_kwargs.get("image_grid_thw", None)
video_grid_thw = model_kwargs.get("video_grid_thw", None)
image_nums, video_nums = self._get_image_nums_and_video_nums(input_ids)
def _repeat_interleave_samples(x, lengths, repeat_times):
samples = torch.split(x, lengths)
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
return result
for key in dict_to_expand:
if key == "pixel_values":
# split images into samples
samples = torch.split(image_grid_thw, list(image_nums))
# compute the sequence length of images for each sample
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "image_grid_thw":
# get the num of images for each sample
lengths = list(image_nums)
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "pixel_values_videos":
samples = torch.split(video_grid_thw, list(video_nums))
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "video_grid_thw":
lengths = list(video_nums)
dict_to_expand[key] = _repeat_interleave_samples(
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
)
elif key == "second_per_grid_ts":
if not isinstance(dict_to_expand[key], list):
raise TypeError(
f"Expected value for key '{key}' to be a list, but got {type(dict_to_expand[key])} instead."
)
tensor = torch.tensor(dict_to_expand[key])
lengths = list(video_nums)
tensor = _repeat_interleave_samples(tensor, lengths=lengths, repeat_times=expand_size)
dict_to_expand[key] = tensor.tolist()
return dict_to_expand
def _expand_dict_for_generation(dict_to_expand):
for key in dict_to_expand:
if (
key != "cache_position"
and dict_to_expand[key] is not None
and isinstance(dict_to_expand[key], torch.Tensor)
and key not in visual_keys
):
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
return dict_to_expand
# input_ids is required for expanding visual inputs
# If input_ids is unavailable, visual inputs will not be used; therefore, there is no need to expand visual inputs.
if input_ids is not None and input_ids.numel() != 0:
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
if input_ids is not None:
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
model_kwargs = _expand_dict_for_generation(model_kwargs)
if is_encoder_decoder:
if model_kwargs.get("encoder_outputs") is None:
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
return input_ids, model_kwargs
# __all__ = ["Qwen2_5_VLForConditionalGeneration", "Qwen2_5_VLModel", "Qwen2_5_VLPreTrainedModel"]