Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -111,7 +111,7 @@ def initialize_models(args):
|
|
111 |
# Load main model and task head
|
112 |
model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
|
113 |
args.model_path,
|
114 |
-
torch_dtype=torch.
|
115 |
attn_implementation="sdpa",
|
116 |
quantization_config=quantization_config if args.nf4 else None,
|
117 |
)
|
@@ -134,19 +134,19 @@ def initialize_models(args):
|
|
134 |
args.flux_path,
|
135 |
subfolder="text_encoder_2",
|
136 |
quantization_config=quantization_config,
|
137 |
-
torch_dtype=torch.
|
138 |
)
|
139 |
pipe = FluxPipeline.from_pretrained(
|
140 |
args.flux_path,
|
141 |
transformer=model.denoise_tower.denoiser,
|
142 |
text_encoder_2=text_encoder_2,
|
143 |
-
torch_dtype=torch.
|
144 |
)
|
145 |
else:
|
146 |
pipe = FluxPipeline.from_pretrained(
|
147 |
args.flux_path,
|
148 |
transformer=model.denoise_tower.denoiser,
|
149 |
-
torch_dtype=torch.
|
150 |
)
|
151 |
if args.offload:
|
152 |
pipe.enable_model_cpu_offload()
|
@@ -159,7 +159,7 @@ def initialize_models(args):
|
|
159 |
siglip_processor = SiglipImageProcessor.from_pretrained(args.siglip_path)
|
160 |
siglip_model = SiglipVisionModel.from_pretrained(
|
161 |
args.siglip_path,
|
162 |
-
torch_dtype=torch.
|
163 |
)
|
164 |
|
165 |
return {
|
|
|
111 |
# Load main model and task head
|
112 |
model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
|
113 |
args.model_path,
|
114 |
+
torch_dtype=torch.float16,
|
115 |
attn_implementation="sdpa",
|
116 |
quantization_config=quantization_config if args.nf4 else None,
|
117 |
)
|
|
|
134 |
args.flux_path,
|
135 |
subfolder="text_encoder_2",
|
136 |
quantization_config=quantization_config,
|
137 |
+
torch_dtype=torch.float16,
|
138 |
)
|
139 |
pipe = FluxPipeline.from_pretrained(
|
140 |
args.flux_path,
|
141 |
transformer=model.denoise_tower.denoiser,
|
142 |
text_encoder_2=text_encoder_2,
|
143 |
+
torch_dtype=torch.float16,
|
144 |
)
|
145 |
else:
|
146 |
pipe = FluxPipeline.from_pretrained(
|
147 |
args.flux_path,
|
148 |
transformer=model.denoise_tower.denoiser,
|
149 |
+
torch_dtype=torch.float16,
|
150 |
)
|
151 |
if args.offload:
|
152 |
pipe.enable_model_cpu_offload()
|
|
|
159 |
siglip_processor = SiglipImageProcessor.from_pretrained(args.siglip_path)
|
160 |
siglip_model = SiglipVisionModel.from_pretrained(
|
161 |
args.siglip_path,
|
162 |
+
torch_dtype=torch.float16,
|
163 |
)
|
164 |
|
165 |
return {
|