LanguageBind commited on
Commit
f5136ec
·
verified ·
1 Parent(s): efec919

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -111,7 +111,7 @@ def initialize_models(args):
111
  # Load main model and task head
112
  model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
113
  args.model_path,
114
- torch_dtype=torch.float32,
115
  attn_implementation="sdpa",
116
  quantization_config=quantization_config if args.nf4 else None,
117
  )
@@ -134,19 +134,19 @@ def initialize_models(args):
134
  args.flux_path,
135
  subfolder="text_encoder_2",
136
  quantization_config=quantization_config,
137
- torch_dtype=torch.float32,
138
  )
139
  pipe = FluxPipeline.from_pretrained(
140
  args.flux_path,
141
  transformer=model.denoise_tower.denoiser,
142
  text_encoder_2=text_encoder_2,
143
- torch_dtype=torch.float32,
144
  )
145
  else:
146
  pipe = FluxPipeline.from_pretrained(
147
  args.flux_path,
148
  transformer=model.denoise_tower.denoiser,
149
- torch_dtype=torch.float32,
150
  )
151
  if args.offload:
152
  pipe.enable_model_cpu_offload()
@@ -159,7 +159,7 @@ def initialize_models(args):
159
  siglip_processor = SiglipImageProcessor.from_pretrained(args.siglip_path)
160
  siglip_model = SiglipVisionModel.from_pretrained(
161
  args.siglip_path,
162
- torch_dtype=torch.float32,
163
  )
164
 
165
  return {
 
111
  # Load main model and task head
112
  model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained(
113
  args.model_path,
114
+ torch_dtype=torch.float16,
115
  attn_implementation="sdpa",
116
  quantization_config=quantization_config if args.nf4 else None,
117
  )
 
134
  args.flux_path,
135
  subfolder="text_encoder_2",
136
  quantization_config=quantization_config,
137
+ torch_dtype=torch.float16,
138
  )
139
  pipe = FluxPipeline.from_pretrained(
140
  args.flux_path,
141
  transformer=model.denoise_tower.denoiser,
142
  text_encoder_2=text_encoder_2,
143
+ torch_dtype=torch.float16,
144
  )
145
  else:
146
  pipe = FluxPipeline.from_pretrained(
147
  args.flux_path,
148
  transformer=model.denoise_tower.denoiser,
149
+ torch_dtype=torch.float16,
150
  )
151
  if args.offload:
152
  pipe.enable_model_cpu_offload()
 
159
  siglip_processor = SiglipImageProcessor.from_pretrained(args.siglip_path)
160
  siglip_model = SiglipVisionModel.from_pretrained(
161
  args.siglip_path,
162
+ torch_dtype=torch.float16,
163
  )
164
 
165
  return {