import gradio as gr import sys sys.path.append("..") from transformers import AutoProcessor, SiglipImageProcessor, SiglipVisionModel, T5EncoderModel, BitsAndBytesConfig from univa.models.qwen2p5vl.modeling_univa_qwen2p5vl import UnivaQwen2p5VLForConditionalGeneration from univa.utils.flux_pipeline import FluxPipeline from univa.utils.get_ocr import get_ocr_result from univa.utils.denoiser_prompt_embedding_flux import encode_prompt from qwen_vl_utils import process_vision_info from univa.utils.anyres_util import dynamic_resize, concat_images_adaptive import torch from torch import nn import os import uuid import base64 from typing import Dict from PIL import Image, ImageDraw, ImageFont import spaces import argparse import gc def parse_args(): parser = argparse.ArgumentParser(description="Model and component paths") parser.add_argument("--model_path", type=str, default="LanguageBind/UniWorld-V1", help="UniWorld-V1模型路径") parser.add_argument("--flux_path", type=str, default="black-forest-labs/FLUX.1-dev", help="FLUX.1-dev模型路径") parser.add_argument("--siglip_path", type=str, default="google/siglip2-so400m-patch16-512", help="siglip2模型路径") parser.add_argument("--server_name", type=str, default="127.0.0.1", help="IP地址") parser.add_argument("--server_port", type=int, default=6812, help="端口号") parser.add_argument("--share", action="store_true", help="是否公开分享") parser.add_argument("--nf4", action="store_true", help="是否NF4量化") parser.add_argument("--zh", action="store_true", help="是否使用中文") parser.add_argument("--offload", action="store_true", help="是否开启顺序卸载") return parser.parse_args() def add_plain_text_watermark( img: Image.Image, text: str, margin: int = 50, font_size: int = 30, ): if img.mode != "RGB": img = img.convert("RGB") draw = ImageDraw.Draw(img) font = ImageFont.truetype("DejaVuSans.ttf", font_size) bbox = draw.textbbox((0, 0), text) text_width = bbox[2] - bbox[0] text_height = bbox[3] - bbox[1] x = img.width - text_width - int(3.3 * margin) y = img.height - text_height - margin draw.text((x, y), text, font=font, fill=(255, 255, 255)) return img css = """ .table-wrap table tr td:nth-child(3) > div { max-height: 150px; /* 最多 100px 高度,按需修改 */ overflow-y: auto; /* 超出部分显示竖向滚动条 */ white-space: pre-wrap; /* 自动换行 */ word-break: break-all; /* 长单词内部分行 */ } .table-wrap table tr td:nth-child(2) > div { max-width: 150px; white-space: pre-wrap; word-break: break-all; overflow-x: auto; } .table-wrap table tr th:nth-child(2) { max-width: 150px; white-space: normal; word-break: keep-all; overflow-x: auto; } .table-wrap table tr td:nth-last-child(-n+8) > div { max-width: 130px; white-space: pre-wrap; word-break: break-all; overflow-x: auto; } .table-wrap table tr th:nth-last-child(-n+8) { max-width: 130px; white-space: normal; word-break: keep-all; overflow-x: auto; } """ def img2b64(image_path): with open(image_path, "rb") as f: b64 = base64.b64encode(f.read()).decode() data_uri = f"data:image/jpeg;base64,{b64}" return data_uri @spaces.GPU def initialize_models(args): os.makedirs("tmp", exist_ok=True) # Paths device = torch.device("cuda" if torch.cuda.is_available() else "cpu") quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_quant_type="nf4", ) # Load main model and task head model = UnivaQwen2p5VLForConditionalGeneration.from_pretrained( args.model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", quantization_config=quantization_config if args.nf4 else None, ).to(device) task_head = nn.Sequential( nn.Linear(3584, 10240), nn.SiLU(), nn.Dropout(0.3), nn.Linear(10240, 2) ).to(device) task_head.load_state_dict(torch.load(os.path.join(args.model_path, 'task_head_final.pt'))) task_head.eval() processor = AutoProcessor.from_pretrained( args.model_path, min_pixels=448*448, max_pixels=448*448, ) if args.nf4: text_encoder_2 = T5EncoderModel.from_pretrained( args.flux_path, subfolder="text_encoder_2", quantization_config=quantization_config, torch_dtype=torch.bfloat16, ) pipe = FluxPipeline.from_pretrained( args.flux_path, transformer=model.denoise_tower.denoiser, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16, ).to(device) else: pipe = FluxPipeline.from_pretrained( args.flux_path, transformer=model.denoise_tower.denoiser, torch_dtype=torch.bfloat16, ).to(device) if args.offload: pipe.enable_model_cpu_offload() pipe.enable_vae_slicing() tokenizers = [pipe.tokenizer, pipe.tokenizer_2] text_encoders = [pipe.text_encoder, pipe.text_encoder_2] # Optional SigLIP siglip_processor, siglip_model = None, None siglip_processor = SiglipImageProcessor.from_pretrained(args.siglip_path) siglip_model = SiglipVisionModel.from_pretrained( args.siglip_path, torch_dtype=torch.bfloat16, ).to(device) return { 'model': model, 'task_head': task_head, 'processor': processor, 'pipe': pipe, 'tokenizers': tokenizers, 'text_encoders': text_encoders, 'siglip_processor': siglip_processor, 'siglip_model': siglip_model, 'device': device, } args = parse_args() state = initialize_models(args) @spaces.GPU def process_large_image(raw_img): if raw_img is None: return raw_img img = Image.open(raw_img).convert("RGB") max_side = max(img.width, img.height) if max_side > 1024: scale = 1024 / max_side new_w = int(img.width * scale) new_h = int(img.height * scale) print(f'resize img {img.size} to {(new_w, new_h)}') img = img.resize((new_w, new_h), resample=Image.LANCZOS) save_path = f"tmp/{uuid.uuid4().hex}.png" img.save(save_path) return save_path else: return raw_img @spaces.GPU def chat_step(image1, image2, text, height, width, steps, guidance, ocr_enhancer, joint_with_t5, enhance_generation, enhance_understanding, seed, num_imgs, history_state, progress=gr.Progress()): try: convo = history_state['conversation'] image_paths = history_state['history_image_paths'] cur_ocr_i = history_state['cur_ocr_i'] cur_genimg_i = history_state['cur_genimg_i'] # image1 = process_large_image(image1) # image2 = process_large_image(image2) # Build content content = [] if text: ocr_text = '' if ocr_enhancer and content: ocr_texts = [] for img in (image1, image2): if img: ocr_texts.append(get_ocr_result(img, cur_ocr_i)) cur_ocr_i += 1 ocr_text = '\n'.join(ocr_texts) content.append({'type':'text','text': text + ocr_text}) for img in (image1, image2): if img: content.append({'type':'image','image':img,'min_pixels':448*448,'max_pixels':448*448}) image_paths.append(img) convo.append({'role':'user','content':content}) # Prepare inputs chat_text = state['processor'].apply_chat_template(convo, tokenize=False, add_generation_prompt=True) chat_text = '<|im_end|>\n'.join(chat_text.split('<|im_end|>\n')[1:]) image_inputs, video_inputs = process_vision_info(convo) inputs = state['processor']( text=[chat_text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt' ).to(state['device']) # Model forward & task head with torch.no_grad(): outputs = state['model'](**inputs, return_dict=True, output_hidden_states=True) hidden = outputs.hidden_states[-1] mask = inputs.input_ids == 77091 vecs = hidden[mask][-1:] task_res = state['task_head'](vecs.float())[0] print(task_res) # Branch decision if enhance_generation: do_image = True elif enhance_understanding: do_image = False else: do_image = (task_res[0] < task_res[1]) seed = int(seed) if seed == -1: seed = torch.Generator(device="cpu").seed() torch.manual_seed(seed) # Generate if do_image: # image generation pipeline siglip_hs = None if state['siglip_processor'] and image_paths: vals = [state['siglip_processor'].preprocess( images=Image.open(p).convert('RGB'), do_resize=True, return_tensors='pt', do_convert_rgb=True ).pixel_values.to(state['device']) for p in image_paths] siglip_hs = state['siglip_model'](torch.concat(vals)).last_hidden_state with torch.no_grad(): lvlm = state['model']( inputs.input_ids, pixel_values=getattr(inputs,'pixel_values',None), attention_mask=inputs.attention_mask, image_grid_thw=getattr(inputs,'image_grid_thw',None), siglip_hidden_states=siglip_hs, output_type='denoise_embeds' ) prm_embeds, pooled = encode_prompt( state['text_encoders'], state['tokenizers'], text if joint_with_t5 else '', 256, state['device'], 1 ) emb = torch.concat([lvlm, prm_embeds], dim=1) if joint_with_t5 else lvlm def diffusion_to_gradio_callback(_pipeline, step_idx: int, timestep: int, tensor_dict: Dict): # 1)更新 Gradio 进度条 frac = (step_idx + 1) / float(steps) progress(frac) return tensor_dict with torch.no_grad(): img = state['pipe']( prompt_embeds=emb, pooled_prompt_embeds=pooled, height=height, width=width, num_inference_steps=steps, guidance_scale=guidance, generator=torch.Generator(device='cuda').manual_seed(seed), num_images_per_prompt=num_imgs, callback_on_step_end=diffusion_to_gradio_callback, # callback_on_step_end_tensor_inputs=["latents", "prompt_embeds"], ).images # img = [add_plain_text_watermark(im, 'Open-Sora Plan 2.0 Generated') for im in img] img = concat_images_adaptive(img) save_path = f"tmp/{uuid.uuid4().hex}.png" img.save(save_path) convo.append({'role':'assistant','content':[{'type':'image','image':save_path}]}) cur_genimg_i += 1 progress(1.0) bot_msg = (None, save_path) else: # text generation gen_ids = state['model'].generate(**inputs, max_new_tokens=128) out = state['processor'].batch_decode( [g[len(inputs.input_ids[0]):] for g in gen_ids], skip_special_tokens=True )[0] convo.append({'role':'assistant','content':[{'type':'text','text':out}]}) bot_msg = (None, out) chat_pairs = [] # print(convo) # print() # print() for msg in convo: # print(msg) if msg['role']=='user': parts = [] for c in msg['content']: if c['type']=='text': parts.append(c['text']) if c['type']=='image': parts.append(f"![user image]({img2b64(c['image'])})") chat_pairs.append(("\n".join(parts), None)) else: parts = [] for c in msg['content']: if c['type']=='text': parts.append(c['text']) if c['type']=='image': parts.append(f"![assistant image]({img2b64(c['image'])})") if msg['content'][-1]['type']=='text': chat_pairs[-1] = (chat_pairs[-1][0], parts[-1]) else: chat_pairs[-1] = (chat_pairs[-1][0], parts[-1]) # print() # print(chat_pairs) # Update state history_state.update({ 'conversation': convo, 'history_image_paths': image_paths, 'cur_ocr_i': cur_ocr_i, 'cur_genimg_i': cur_genimg_i }) return chat_pairs, history_state, seed except Exception as e: # 捕捉所有异常,返回错误提示,建议用户清理历史后重试 error_msg = f"发生错误:{e}. 请点击 \"Clear History\" 清理对话历史后再试一次。" chat_pairs = [(None, error_msg)] # 不修改 history_state,让用户自行清理 return chat_pairs, history_state, seed def copy_seed_for_user(real_seed): # 这个函数会把隐藏的 seed_holder 值,传给真正要显示的 seed Textbox return real_seed def clear_inputs(): # img1 和 img2 用 None 来清空;text_in 用空字符串清空;seed 同理清空 return None, None, "", "" @spaces.GPU def clear_history(): gc.collect() if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() # 默认 prompt 和 seed default_prompt = "Translate this photo into a Studio Ghibli-style illustration, holding true to the original composition and movement." default_seed = "-1" # 1. chatbot 要用 gr.update(value=[]) 清空 # 2. state 直接给回初始 dict # 3. prompt 和 seed 同样用 gr.update() return ( gr.update(value=[]), # 清空聊天框 {'conversation':[], # 重置 state 'history_image_paths':[], 'cur_ocr_i':0, 'cur_genimg_i':0}, gr.update(value=None), # 重置 image1 gr.update(value=None), # 重置 image2 gr.update(value=default_prompt), # 重置 prompt 文本框 gr.update(value=default_seed), # 重置 seed 文本框 ) if __name__ == '__main__': # Gradio UI with gr.Blocks( theme=gr.themes.Soft(), css=css ) as demo: gr.Markdown( """
# 🎉 UniWorld-V1 Chat Interface 🎉 ### Unlock Cutting‑Edge Visual Perception, Feature Extraction, Editing, Synthesis, and Understanding **Usage Guide:** - It is recommended to perform inference on four images concurrently to offer varied selections. - Uploaded images are automatically resized; manually specifying resolutions that differ substantially from the original is not advised.
""", elem_classes="header-text", ) with gr.Row(): with gr.Column(): chatbot = gr.Chatbot( max_height=100000, min_height=700, height=None, resizable=True, show_copy_button=True ) text_in = gr.Textbox(label="Instruction", value="Translate this photo into a Studio Ghibli-style illustration, holding true to the original composition and movement.") with gr.Column(): with gr.Row(): img1 = gr.Image(type='filepath', label="Image 1", height=256, width=256) img2 = gr.Image(type='filepath', label="Image 2 (Optional reference)", height=256, width=256, visible=True) seed = gr.Textbox(label="Seed (-1 for random)", value="-1") seed_holder = gr.Textbox(visible=False) with gr.Row(): num_imgs = gr.Slider(1, 4, 4, step=1, label="Num Images") with gr.Row(): height = gr.Slider(256, 2048, 1024, step=64, label="Height") width = gr.Slider(256, 2048, 1024, step=64, label="Width") with gr.Row(): steps = gr.Slider(8, 50, 30, step=1, label="Inference steps") guidance = gr.Slider(1.0, 10.0, 4.0, step=0.1, label="Guidance scale") with gr.Accordion("Advanced Options", open=True, visible=True): with gr.Row(): enhance_gen_box = gr.Checkbox(value=False, label="Enhance Generation") enhance_und_box = gr.Checkbox(value=False, label="Enhance Understanding") with gr.Row(): ocr_box = gr.Checkbox(value=False, label="Enhance Text Rendering") t5_box = gr.Checkbox(value=True, label="Enhance Current Turn") with gr.Row(): submit = gr.Button("Send", variant="primary") clear = gr.Button("Clear History", variant="primary") with gr.Row(): with gr.Column(1, min_width=0): gr.Markdown( """ **🖼️ Visual Perception & Feature Extraction** - Canny Edge Detection - Mini-Line Segment Detection - Normal Map Generation - Sketch Generation - Holistically-Nested Edge Detection - Depth Estimation - Human Pose Estimation - Object Detection (Boxes) - Semantic Segmentation (Masks) """ ) with gr.Column(1, min_width=0): gr.Markdown( """ **✂️ Image Editing & Manipulation** - Add Elements - Adjust Attributes - Change Background - Remove Objects - Replace Regions - Perform Actions - Restyle - Compose Scenes """ ) with gr.Column(1, min_width=0): gr.Markdown( """ **🔄 Cross-Modal Synthesis & Transformation** - Text→Image Synthesis - Image‑to‑Image Translation - Multi‑Image Combination - Extract IP Features - IP Feature Composition """ ) with gr.Column(1, min_width=0): gr.Markdown( """ **🤖 Visual & Textual QA** - Image‑Text QA - Text‑Text QA """ ) anchor_pixels = 1024*1024 # Dynamic resize callback def update_size(i1, i2): shapes = [] for p in (i1, i2): if p: im = Image.open(p) w, h = im.size shapes.append((w, h)) if not shapes: return gr.update(), gr.update() if len(shapes) == 1: w, h = shapes[0] else: w = sum(s[0] for s in shapes) / len(shapes) h = sum(s[1] for s in shapes) / len(shapes) new_h, new_w = dynamic_resize(int(h), int(w), 'any_11ratio', anchor_pixels=anchor_pixels) return gr.update(value=new_h), gr.update(value=new_w) img1.change(fn=update_size, inputs=[img1, img2], outputs=[height, width]) img2.change(fn=update_size, inputs=[img1, img2], outputs=[height, width]) # Mutual exclusivity enhance_gen_box.change( lambda g: gr.update(value=False) if g else gr.update(), inputs=[enhance_gen_box], outputs=[enhance_und_box] ) enhance_und_box.change( lambda u: gr.update(value=False) if u else gr.update(), inputs=[enhance_und_box], outputs=[enhance_gen_box] ) state_ = gr.State({'conversation':[], 'history_image_paths':[], 'cur_ocr_i':0, 'cur_genimg_i':0}) progress_bar = gr.Progress() gr.on( triggers=[submit.click, text_in.submit], fn=chat_step, inputs=[img1, img2, text_in, height, width, steps, guidance, ocr_box, t5_box, enhance_gen_box, enhance_und_box, seed, num_imgs, state_, ], outputs=[chatbot, state_, seed_holder], scroll_to_output=True ).then( fn=copy_seed_for_user, inputs=[seed_holder], # 输入是隐藏的 seed_holder outputs=[seed] # 输出到真正要显示的 seed Textbox ) clear.click( fn=clear_history, inputs=[], outputs=[chatbot, state_, img1, img2, text_in, seed] ) # ========== 添加 Validation Examples ========== example_height, example_width = 1024, 1024 gr.Examples( examples_per_page=100, examples=[ # text-to-image [None, None, "Generate an adorable golden retriever puppy playing in a sunny park, " "with fluffy fur, big round eyes, and a happy expression. " "The background should have green grass, some flowers, and a blue sky with white clouds.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # NIKE color swap ["assets/nike_src.jpg", None, "Switch the product's color from black, black to white, white, making sure the transition is crisp and clear.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # style transfer (Ghibli) ["assets/gradio/origin.png", None, "Translate this photo into a Studio Ghibli-style illustration, holding true to the original composition and movement.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], ["assets/gradio/origin.png", None, "Remove the bicycle located in the lower center region of the image.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # blur ["assets/gradio/blur.jpg", None, "Remove blur, make it clear.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # ["assets/gradio/00004614_tgt.jpg", None, "Add the ingrid fair isle cashmere turtleneck sweater to the person.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # ["assets/gradio/00006581_tgt.jpg", None, "Place the belvoir broderie anglaise linen tank on the person in a way that complements their appearance and style.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # ["assets/gradio/00008153_tgt.jpg", None, "Integrate may cashmere tank on body.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # ["assets/gradio/00002315_src.jpg", None, "Strip away all context and distractions, leaving the pointelle-trimmed cashmere t-shirt floating on a neutral background.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # ["assets/gradio/00002985_src.jpg", None, "Generate an image containing only the henry shearling jacket, free from any other visual elements.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], ["assets/gradio/origin.png", None, "Add a cat in the center of image.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image+image-to-image (compose) ["assets/00182555_target.jpg", "assets/00182555_InstantStyle_ref_1.jpg", "Adapt Image1's content to fit the aesthetic of Image2.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # replace object ["assets/replace_src.png", None, "replace motorcycle located in the lower center region of the image with a black bicycle", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # segmentation ["assets/seg_src.jpg", None, "Segment the giraffe from the background.\n", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # detection ["assets/det_src.jpg", None, "Please depict the vase accurately", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-canny ["assets/canny_image.jpg", None, "Generate a Canny edge map for this image.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-mlsd ["assets/mlsd_image.jpg", None, "Render an MLSD detection overlay for this input image.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-normal ["assets/normal_image.jpg", None, "Convert the input texture into a tangent-space normal map.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-sketch ["assets/sketch_image.jpg", None, "Transform this image into a hand-drawn charcoal sketch.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-hed ["assets/hed_image.jpg", None, "Produce a holistically-nested boundary probability map of this image.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-depth ["assets/depth_image.jpg", None, "Estimate depth with a focus on background structure.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], # image-to-image (reconstruction) ["assets/rec.jpg", None, "Simply reconstruct the original image with no enhancements.", example_height, example_width, 30, 4.0, False, False, False, False, "-1", 4], ], inputs=[img1, img2, text_in, height, width, steps, guidance, ocr_box, t5_box, enhance_gen_box, enhance_und_box, seed, num_imgs], ) # ============================================== UI_TRANSLATIONS = { "🎉 UniWorld-V1 Chat Interface 🎉":"🎉 UniWorld-V1 聊天界面 🎉", "Unlock Cutting‑Edge Visual Perception, Feature Extraction, Editing, Synthesis, and Understanding": '解锁尖端视觉感知,特征提取,编辑,合成和理解', "Usage Guide:":"使用指南:", "It is recommended to perform inference on four images concurrently to offer varied selections.":"建议同时进行四张图像的推理,以提供多选。", "Uploaded images are automatically resized; manually specifying resolutions that differ substantially from the original is not advised.":"已上传的图像将自动调整大小,但手动指定与原始图像差异太大的分辨率并不建议。", "🖼️ Visual Perception & Feature Extraction":"🖼️ 视觉感知与特征提取", "Canny Edge Detection":"Canny边缘检测 ", "Mini-Line Segment Detection":"微型行段检测", "Normal Map Generation":"生成法线图", "Sketch Generation":"手绘生成", "Holistically-Nested Edge Detection":"整体嵌套边缘检测", "Depth Estimation":"深度估计", "Human Pose Estimation":"人体姿势估计", "Object Detection (Boxes)":"对象检测(框)", "Semantic Segmentation (Masks)":"语义分割(蒙版)", "✂️ Image Editing & Manipulation":"✂️ 图像编辑与操作", "Add Elements":"添加元素", "Adjust Attributes":"调整属性", "Change Background":"更改背景", "Remove Objects":"删除对象", "Replace Regions":"替换区域", "Perform Actions":"执行操作", "Restyle":"重绘风格", "Compose Scenes":"组合场景", "🔄 Cross-Modal Synthesis & Transformation":"🔄 跨模态综合与转换", "Text→Image Synthesis":"文本→图像综合", "Image‑to‑Image Translation":"图像-图像转换", "Multi‑Image Combination":"多图像组合", "Extract IP Features":"提取IP特征", "IP Feature Composition":"IP特征组合", "🤖 Visual & Textual QA":"🤖 视觉和文字质量检查", "Image‑Text QA":"图像-文本质量检查", "Text‑Text QA":"文本-文本质量检查", "Image 1":"图像 1", "Image 2 (Optional reference)":"图像 2 (可选参考)", "Instruction":"指令", "Seed (-1 for random)":"种子 (-1为随机)", "Num Images":"图像数量", "Height":"高度", "Width":"宽度", "Inference steps":"推理步数", "Guidance scale":"引导缩放", "Advanced Options":"高级选项", "Enhance Generation":"增强生成", "Enhance Understanding":"增强理解", "Enhance Text Rendering":"增强文本渲染", "Enhance Current Turn":"增强当前轮次", "Send":"发送", "Clear History":"清除历史记录", } def apply_localization(block): def process_component(component): if not component: return for attr in ['label', 'info', 'placeholder']: if hasattr(component, attr): text = getattr(component, attr) if text in UI_TRANSLATIONS: setattr(component, attr, UI_TRANSLATIONS[text]) if hasattr(component, 'value'): value = component.value if isinstance(value, str) and value in UI_TRANSLATIONS: component.value = UI_TRANSLATIONS[value] if isinstance(component, gr.Markdown): for en, zh in UI_TRANSLATIONS.items(): component.value = component.value.replace(en, zh) if hasattr(component, 'children'): for child in component.children: process_component(child) process_component(block) return block if __name__ == "__main__": if args.zh: demo = apply_localization(demo) demo.title = "UniWorld-V1" demo.launch( allowed_paths=["/"], server_name=args.server_name, server_port=args.server_port, share=args.share, inbrowser=True, ) ''' MODEL_PATH="/mnt/data/lb/Remake/FlowWorld/checkpoints/flux_qwen2p5vl_7b_vlm_mlp_siglip_stage2_ts_1024_bs42x8x1_fa_any_11ratio_ema999_ocr_adamw_t5_0p4_lr1e-5_mask_refstyle_extract_resume_run3/checkpoint-12000/model_ema" FLUX_PATH="/mnt/data/checkpoints/black-forest-labs/FLUX.1-dev" SIGLIP_PATH="/mnt/data/checkpoints/google/siglip2-so400m-patch16-512" CUDA_VISIBLE_DEVICES=2 python app.py \ --model_path ${MODEL_PATH} \ --flux_path ${FLUX_PATH} \ --siglip_path ${SIGLIP_PATH} '''