import argparse import os import os.path as osp import time from collections import defaultdict import numpy as np import pandas as pd import torch from accelerate import Accelerator from accelerate.utils import gather_object from PIL import Image from tqdm import tqdm def parse_args(): parser = argparse.ArgumentParser(description="DPG-Bench evaluation.") parser.add_argument( "--image_root_path", type=str, default=None, ) parser.add_argument( "--resolution", type=int, default=None, ) parser.add_argument( "--csv", type=str, default='eval/eval_prompts/DPGbench/dpg_bench.csv', ) parser.add_argument( "--res_path", type=str, default='eval/dpgbench_test/score_result/result.txt', ) parser.add_argument( "--pic_num", type=int, default=1, ) parser.add_argument( "--vqa_model", type=str, default='mplug', ) parser.add_argument( "--vqa_model_ckpt", type=str, default='/storage/hxy/t2i/opensora/Open-Sora-Plan/opensora/eval/dpgbench_test/mplug', ) parser.add_argument( "--mplug_local_path", type=str, default='/storage/hxy/t2i/opensora/Open-Sora-Plan/opensora/eval/dpgbench_test/mplug', ) args = parser.parse_args() return args class MPLUG(torch.nn.Module): def __init__(self, ckpt='weight/dpgbench', device='gpu'): super().__init__() from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks self.pipeline_vqa = pipeline(Tasks.visual_question_answering, model=ckpt, device=device) def vqa(self, image, question): input_vqa = {'image': image, 'question': question} result = self.pipeline_vqa(input_vqa) return result['text'] def prepare_dpg_data(args): previous_id = '' current_id = '' question_dict = dict() category_count = defaultdict(int) # 'item_id', 'text', 'keywords', 'proposition_id', 'dependency', 'category_broad', 'category_detailed', 'tuple', 'question_natural_language' data = pd.read_csv(args.csv) for i, line in data.iterrows(): if i == 0: continue current_id = line.item_id qid = int(line.proposition_id) dependency_list_str = line.dependency.split(',') dependency_list_int = [] for d in dependency_list_str: d_int = int(d.strip()) dependency_list_int.append(d_int) if current_id == previous_id: question_dict[current_id]['qid2tuple'][qid] = line.tuple question_dict[current_id]['qid2dependency'][qid] = dependency_list_int question_dict[current_id]['qid2question'][qid] = line.question_natural_language else: question_dict[current_id] = dict( qid2tuple={qid: line.tuple}, qid2dependency={qid: dependency_list_int}, qid2question={qid: line.question_natural_language}) category = line.question_natural_language.split('(')[0].strip() category_count[category] += 1 previous_id = current_id return question_dict def crop_image(input_image, crop_tuple=None): if crop_tuple is None: return input_image cropped_image = input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3])) return cropped_image def compute_dpg_one_sample(args, question_dict, image_path, vqa_model, resolution): generated_image = Image.open(image_path) crop_tuples_list = [ (0,0,resolution,resolution), (resolution, 0, resolution*2, resolution), (0, resolution, resolution, resolution*2), (resolution, resolution, resolution*2, resolution*2), ] crop_tuples = crop_tuples_list[:args.pic_num] key = osp.basename(image_path).split('.')[0] value = question_dict.get(key, None) qid2tuple = value['qid2tuple'] qid2question = value['qid2question'] qid2dependency = value['qid2dependency'] qid2answer = dict() qid2scores = dict() qid2validity = dict() scores = [] for crop_tuple in crop_tuples: cropped_image = crop_image(generated_image, crop_tuple) for id, question in qid2question.items(): answer = vqa_model.vqa(cropped_image, question) qid2answer[id] = answer qid2scores[id] = float(answer == 'yes') with open(args.res_path.replace('.txt', '_detail.txt'), 'a') as f: f.write(image_path + ', ' + str(crop_tuple) + ', ' + question + ', ' + answer + '\n') qid2scores_orig = qid2scores.copy() for id, parent_ids in qid2dependency.items(): # zero-out scores if parent questions are answered 'no' any_parent_answered_no = False for parent_id in parent_ids: if parent_id == 0: continue if qid2scores[parent_id] == 0: any_parent_answered_no = True break if any_parent_answered_no: qid2scores[id] = 0 qid2validity[id] = False else: qid2validity[id] = True score = sum(qid2scores.values()) / len(qid2scores) scores.append(score) average_score = sum(scores) / len(scores) with open(args.res_path, 'a') as f: f.write(image_path + ', ' + ', '.join(str(i) for i in scores) + ', ' + str(average_score) + '\n') return average_score, qid2tuple, qid2scores_orig def main(): args = parse_args() accelerator = Accelerator() question_dict = prepare_dpg_data(args) timestamp = time.time() time_array = time.localtime(timestamp) time_style = time.strftime("%Y%m%d-%H%M%S", time_array) if args.res_path is None: args.res_path = osp.join(args.image_root_path, f'dpg-bench_{time_style}_results.txt') if accelerator.is_main_process: with open(args.res_path, 'w') as f: pass with open(args.res_path.replace('.txt', '_detail.txt'), 'w') as f: pass device = str(accelerator.device) if args.vqa_model == 'mplug': vqa_model = MPLUG(args.mplug_local_path, device=device) else: raise NotImplementedError vqa_model = accelerator.prepare(vqa_model) vqa_model = getattr(vqa_model, 'module', vqa_model) filename_list = os.listdir(args.image_root_path) num_each_rank = len(filename_list) / accelerator.num_processes local_rank = accelerator.process_index local_filename_list = filename_list[round(local_rank * num_each_rank) : round((local_rank + 1) * num_each_rank)] local_scores = [] local_category2scores = defaultdict(list) model_id = osp.basename(args.image_root_path) print(f'Start to conduct evaluation of {model_id}') for fn in tqdm(local_filename_list): image_path = osp.join(args.image_root_path, fn) try: # compute score of one sample score, qid2tuple, qid2scores = compute_dpg_one_sample( args=args, question_dict=question_dict, image_path=image_path, vqa_model=vqa_model, resolution=args.resolution) local_scores.append(score) # summarize scores by categoris for qid in qid2tuple.keys(): category = qid2tuple[qid].split('(')[0].strip() qid_score = qid2scores[qid] local_category2scores[category].append(qid_score) except Exception as e: print('Failed filename:', fn, e) continue accelerator.wait_for_everyone() global_dpg_scores = gather_object(local_scores) mean_dpg_score = np.mean(global_dpg_scores) global_categories = gather_object(list(local_category2scores.keys())) global_categories = set(global_categories) global_category2scores = dict() global_average_scores = [] for category in global_categories: local_category_scores = local_category2scores.get(category, []) global_category2scores[category] = gather_object(local_category_scores) global_average_scores.extend(gather_object(local_category_scores)) global_category2scores_l1 = defaultdict(list) for category in global_categories: l1_category = category.split('-')[0].strip() global_category2scores_l1[l1_category].extend(global_category2scores[category]) time.sleep(3) if accelerator.is_main_process: output = f'Model: {model_id}\n' output += 'L1 category scores:\n' for l1_category in global_category2scores_l1.keys(): output += f'\t{l1_category}: {np.mean(global_category2scores_l1[l1_category]) * 100}\n' output += 'L2 category scores:\n' for category in sorted(global_categories): output += f'\t{category}: {np.mean(global_category2scores[category]) * 100}\n' output += f'Image path: {args.image_root_path}\n' output += f'Save results to: {args.res_path}\n' output += f'DPG-Bench score: {mean_dpg_score * 100}' with open(args.res_path, 'a') as f: f.write(output + '\n') print(output) if __name__ == "__main__": main()