import gradio as gr import json import random import os from PIL import Image import matplotlib.pyplot as plt import io from PIL import Image as PILImage import transformers import copy import torch import concurrent.futures # 常量定义 IGNORE_INDEX = -100 IMAGE_TOKEN_INDEX = 1 DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" DEFAULT_GEN_IMAGE_TOKEN = "" DEFAULT_IMAGE_TOKEN = "" def preprocess_qwen_chatml( sources, tokenizer: transformers.PreTrainedTokenizer, system_message: str = "You are a helpful assistant.", ): # roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} roles = {"human": "user", "gpt": "assistant"} image_token_index = tokenizer.convert_tokens_to_ids("") # im_start, im_end = tokenizer.additional_special_tokens_ids im_start, im_end = tokenizer("<|im_start|>").input_ids[0], tokenizer("<|im_end|>").input_ids[0] # unmask_tokens = ["<|im_start|>", "<|im_start|>", "\n"] unmask_tokens_idx = [198, im_start, im_end] nl_tokens = tokenizer("\n").input_ids # Reset Qwen chat templates so that it won't include system message every time we apply chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" tokenizer.chat_template = chat_template # _system = tokenizer("system").input_ids + nl_tokens # _user = tokenizer("user").input_ids + nl_tokens # _assistant = tokenizer("assistant").input_ids + nl_tokens # Apply prompt templates input_ids, targets = [], [] # print(sources) for i, source in enumerate(sources): # print(source[0]) # print(source[0]["from"]) if roles[source[0]["from"]] != roles["human"]: source = source[1:] input_id, target = [], [] # New version, use apply chat template # Build system message for each sentence input_id += tokenizer.apply_chat_template([{"role" : "system", "content" : system_message}]) target += [IGNORE_INDEX] * len(input_id) for conv in source: # Make sure llava data can load try: role = conv["role"] content = conv["content"] except: role = conv["from"] content = conv["value"] role = roles.get(role, role) conv = [{"role" : role, "content" : content}] encode_id = tokenizer.apply_chat_template(conv) input_id += encode_id if role in ["user", "system"]: target += [IGNORE_INDEX] * len(encode_id) else: target += encode_id assert len(input_id) == len(target), f"{len(input_id)} != {len(target)}" for idx, encode_id in enumerate(input_id): if encode_id in unmask_tokens_idx: target[idx] = encode_id if encode_id == image_token_index: input_id[idx] = IMAGE_TOKEN_INDEX # import ipdb;ipdb.set_trace() input_ids.append(input_id) targets.append(target) input_ids = torch.tensor(input_ids, dtype=torch.long) targets = torch.tensor(targets, dtype=torch.long) return dict( input_ids=input_ids, # tensor(bs x seq_len) labels=targets, # tensor(bs x seq_len) ) def preprocess_multimodal( sources, ): is_multimodal = True if not is_multimodal: return sources is_gen_task = False for source in sources: len_source = len(source) for idx, sentence in enumerate(source): # DEFAULT_GEN_IMAGE_TOKEN must be the last image, and will be transform to DEFAULT_IMAGE_TOKEN if DEFAULT_GEN_IMAGE_TOKEN in sentence["value"]: assert idx + 1 == len_source assert sentence['value'].count(DEFAULT_GEN_IMAGE_TOKEN) == 1 sentence["value"] = sentence["value"].replace(DEFAULT_GEN_IMAGE_TOKEN, DEFAULT_IMAGE_TOKEN) is_gen_task = True if DEFAULT_IMAGE_TOKEN in sentence['value']: # sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() # sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] sentence['value'] = sentence['value'].strip() replace_token = DEFAULT_IMAGE_TOKEN sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) return sources # —— Gradio 相关函数 —— data = [] img_root = "" def load_json(json_path, image_root): global data, img_root img_root = image_root.strip() try: with open(json_path.strip(), 'r', encoding='utf-8') as f: data = json.load(f) return f"Loaded successfully {len(data)} raw data." except Exception as e: return f"Error loading JSON file:{e}" # def check_image_tags(progress=gr.Progress()): # global data # checked, skipped = [], 0 # for sample in progress.tqdm(data, desc="检查中"): # img_f = sample.get("image", None) # conv = sample.get("conversations", []) # cnt = sum(turn["value"].count("") + turn["value"].count("") for turn in conv) # valid = False # if img_f is None: # valid = (cnt == 0) # elif isinstance(img_f, str): # valid = (cnt == 1) # elif isinstance(img_f, list): # valid = (len(img_f) == cnt) # if valid: # checked.append(sample) # else: # skipped += 1 # data = checked # return f"检查完成。有效样本:{len(data)},跳过:{skipped}" def check_image_tags(min_images=0, progress=gr.Progress()): global data if len(data) == 0: return "Please enter the JSON file path and click Load." checked, skipped = [], 0 for sample in progress.tqdm(data, desc="Checking"): img_f = sample.get("image", None) conv = sample.get("conversations", []) # 计算该样本中对话里所有出现的 "" 和 "" 的总数 cnt = sum(turn["value"].count("") + turn["value"].count("") for turn in conv) # 判断是否满足最少图片数量的要求 if cnt < min_images: skipped += 1 continue # 判断 image 字段与对话中图片符号数量是否匹配 valid = False if img_f is None: valid = (cnt == 0) elif isinstance(img_f, str): valid = (cnt == 1) elif isinstance(img_f, list): valid = (len(img_f) == cnt) if valid: checked.append(sample) else: skipped += 1 exist_pct = (len(checked) / len(data) * 100) if len(data) > 0 else 0.0 if skipped == 0: return (f"✅ Total image path: {len(data)}," f"Ratio: {exist_pct:.2f}%") else: return (f"❌ Total image path: {len(data)}," f"Success: {len(checked)}," f"Error: {skipped}," f"Ratio: {exist_pct:.2f}%") def show_random_sample(): global data if len(data) == 0: return "Please enter the JSON file path and click Load." if len(img_root) == 0: return "Please enter the root directory of the image and click Load." sample = random.choice(data) img_f = sample.get("image", []) imgs = [img_f] if isinstance(img_f, str) else (img_f or []) fulls = [os.path.join(img_root, p) for p in imgs if os.path.exists(os.path.join(img_root, p))] text = "" for turn in sample.get("conversations", []): sp = "🧑 User: " if turn["from"]=="human" else "🤖 AI: " text += f"{sp}{turn['value'].strip()}\n\n" return fulls, text def count_image_distribution_with_plot(progress=gr.Progress()): global data if len(data) == 0: return "Please enter the JSON file path and click Load." stats = {"nlp data":0,"1 ":0,"2 ":0,"more than 2":0} for sample in progress.tqdm(data, desc="Checking"): img_f = sample.get("image", None) if img_f is None: stats["nlp data"] += 1 elif isinstance(img_f, str): stats["1 "] += 1 else: L = len(img_f) if L==1: stats["1 "] += 1 elif L==2: stats["2 "] += 1 else: stats["more than 2"] += 1 total = sum(stats.values()) props = [v/total for v in stats.values()] labels = list(stats.keys()) plt.figure(figsize=(8,6)) plt.bar(labels, props, color=['#ff9999','#66b3ff','#99ff99','#ffcc99']) plt.ylabel('Ratio') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) return PILImage.open(buf) # —— 多进程验证相关 —— _tokenizer_global = None def _init_worker(model_name): global _tokenizer_global _tokenizer_global = transformers.AutoTokenizer.from_pretrained(model_name) _tokenizer_global.add_tokens([""], special_tokens=True) def _validate_sample(sample): # 使用全局 _tokenizer_global sample = [sample] # print(copy.deepcopy([e["conversations"] for e in sample])) sources = preprocess_multimodal( copy.deepcopy([e["conversations"] for e in sample]) ) preprocess_qwen_chatml(sources, _tokenizer_global) return True def validate_format(model_name, progress=gr.Progress()): global data if len(data) == 0: return "Please enter the JSON file path and click Load." if len(img_root) == 0: return "Please enter the root directory of the image and click Load." # _init_worker(model_name) # for sample in data: # _validate_sample(sample) try: total = len(data) # 使用与 CPU 核数相同的进程数 with concurrent.futures.ProcessPoolExecutor( max_workers=os.cpu_count(), # max_workers=1, initializer=_init_worker, initargs=(model_name,) ) as executor: futures = [executor.submit(_validate_sample, sample) for sample in data] for i, fut in enumerate(concurrent.futures.as_completed(futures)): progress((i+1)/total, desc="Checking") if fut.exception(): # 发现错误,取消剩余 executor.shutdown(cancel_futures=True) raise fut.exception() return "✅ Data format valid!" except Exception as e: return f"❌ Invalid data format: {e}" def _check_paths_sample(sample): total_paths = 0 exist_count = 0 img_f = sample.get("image", None) if isinstance(img_f, str): paths = [img_f] elif isinstance(img_f, list): paths = img_f else: return 0, 0 for p in paths: total_paths += 1 full = os.path.join(img_root, p) if os.path.exists(full): exist_count += 1 return total_paths, exist_count def check_image_paths(progress=gr.Progress()): global data total_paths = 0 exist_count = 0 total_samples = len(data) if len(data) == 0: return "Please enter the JSON file path and click Load." if len(img_root) == 0: return "Please enter the root directory of the image and click Load." with concurrent.futures.ProcessPoolExecutor(max_workers=os.cpu_count()) as executor: futures = [executor.submit(_check_paths_sample, sample) for sample in data] for i, fut in enumerate(concurrent.futures.as_completed(futures)): progress((i+1) / total_samples, desc="Checking") # try: sample_total, sample_exist = fut.result() total_paths += sample_total exist_count += sample_exist # except Exception as e: # return str(e) missing_count = total_paths - exist_count exist_pct = (exist_count / total_paths * 100) if total_paths > 0 else 0.0 if exist_pct == 100.0: return (f"✅ Total image path: {total_paths}," f"Ratio: {exist_pct:.2f}%") else: return (f"❌ Total image path: {total_paths}," f"Found: {exist_count}," f"Not Found: {missing_count}," f"Ratio: {exist_pct:.2f}%") # —— Gradio 界面搭建 —— with gr.Blocks() as demo: gr.Markdown("## 🔍 UniWorld Data Verification Tool") with gr.Row(): json_path = gr.Textbox(label="JSON file path") image_root = gr.Textbox(label="Image root directory") load_btn = gr.Button("Load JSON (click here)") load_status = gr.Textbox(label="Loading status", interactive=False) with gr.Row(): check_btn = gr.Button("🔍 Check the tag (click here)") min_images_input = gr.Number(label="Minimum number of images", value=0, precision=0) check_status = gr.Textbox(label=" check results", interactive=False) with gr.Row(): check_paths_btn = gr.Button("🔍 Check image path (click here)") check_paths_status = gr.Textbox(label="Path check results", interactive=False) with gr.Row(): validate_btn = gr.Button("🔍 Verify data format (click here)") tokenizer_name = gr.Textbox(label="Tokenizer HF name or absolute path", value="/mnt/data/checkpoints/Qwen/Qwen2.5-3B-Instruct") validate_status= gr.Textbox(label="Verification results", interactive=False) count_btn = gr.Button("📊 Image quantity distribution (click here)") count_plot = gr.Image(type="pil", label="Bar chart showing the distribution of image quantities") gallery = gr.Gallery(label="Image preview", columns=4) text_box = gr.Textbox(label="Conversation content", lines=10, interactive=False) random_btn = gr.Button("Randomly view samples (click here)") # 事件绑定 load_btn.click(load_json, inputs=[json_path, image_root], outputs=load_status) check_btn.click(check_image_tags, inputs=min_images_input, outputs=check_status) check_paths_btn.click(check_image_paths, outputs=check_paths_status) validate_btn.click(validate_format, inputs=tokenizer_name, outputs=validate_status) count_btn.click(count_image_distribution_with_plot, outputs=count_plot) random_btn.click(show_random_sample, outputs=[gallery, text_box]) # server_port = 7888 demo.launch( # server_port=server_port, allowed_paths=['/'] )