from dataclasses import dataclass from typing import Optional, List @dataclass class EvalConfig: pretrained_lvlm_name_or_path: str pretrained_denoiser_name_or_path: str pretrained_siglip_name_or_path: str ocr_enhancer: bool = False joint_with_t5: bool = False only_use_t5: bool = False seed: int = 42 allow_tf32: bool = False output_dir: str = "./output" num_images_per_prompt: int = 1 num_inference_steps: int = 32 guidance_scale: float = 3.5 # Used in Flux num_samples_per_prompt: int = 1 height: int = 1024 width: int = 1024 min_pixels: int = 448*448 max_pixels: int = 448*448 anyres: str = 'any_11ratio' padding_side: str = 'right' local_rank: int = 0 world_size: int = 1 # genai genai_prompt_path: str = "univa/eval/genai/eval_prompts/genai527/genai_image.json" # geneval n_samples: int = 4 geneval_prompt_path: str = "univa/eval/geneval/evaluation_metadata.jsonl" resized_height: int = 1024 resized_width: int = 1024 # dpgbench dpgbench_prompt_path: str = "univa/eval/dpgbench/dpgbench_prompts.json" # wise wise_prompt_path: str = "univa/eval/wise/data" # imgedit imgedit_prompt_path: str = "univa/eval/imgedit/basic_edit.json" imgedit_image_dir: str = "/mnt/data/lb/Remake/imgedit_bench_eval_images" # gedit gedit_prompt_path: str = "univa/eval/gedit/basic_edit.json" gedit_image_dir: str = "/mnt/data/lb/Remake/gedit_bench_eval_images"