Spaces:
Sleeping
Sleeping
added rate limiting and error handling
Browse files- agent.py +487 -682
- app.py +22 -0
- rate_limiter.py +79 -0
agent.py
CHANGED
@@ -270,12 +270,12 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
270 |
"""Assistant node that processes messages and decides on next action."""
|
271 |
from langchain_core.messages import AIMessage # Add import at the start of the function
|
272 |
|
273 |
-
print("Assistant
|
274 |
|
275 |
full_current_history = state["messages"]
|
276 |
iteration_count = state.get("iteration_count", 0)
|
277 |
iteration_count += 1 # Increment for the current call
|
278 |
-
print(f"
|
279 |
|
280 |
# Prepare messages for the LLM
|
281 |
system_msg = SystemMessage(content=SYSTEM_PROMPT)
|
@@ -289,7 +289,7 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
289 |
# Prune if it's time (e.g., after every 5th completed iteration, so check for current iteration 6, 11, etc.)
|
290 |
# Iteration 1-5: no pruning. Iteration 6: prune.
|
291 |
if iteration_count > 5 and (iteration_count - 1) % 5 == 0:
|
292 |
-
print(f"Pruning message history
|
293 |
llm_input_core_messages = prune_messages_for_llm(core_history, num_recent_to_keep=6)
|
294 |
else:
|
295 |
llm_input_core_messages = core_history
|
@@ -300,7 +300,6 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
300 |
# Get response from the assistant
|
301 |
try:
|
302 |
response = chat_with_tools.invoke(messages_for_llm, stop=["Observation:"])
|
303 |
-
print(f"Assistant response type: {type(response)}")
|
304 |
|
305 |
# Check for empty response
|
306 |
if response is None or not hasattr(response, 'content') or not response.content or len(response.content.strip()) < 20:
|
@@ -320,7 +319,6 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
320 |
|
321 |
# Create an appropriate fallback response
|
322 |
if last_observation and "python_code" in state.get("current_tool", ""):
|
323 |
-
# If last tool was Python code, try to formulate a reasonable next step
|
324 |
print("Creating fallback response for empty response after Python code execution")
|
325 |
fallback_content = (
|
326 |
"Thought: I've analyzed the results of the code execution. Based on the observations, "
|
@@ -361,7 +359,7 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
361 |
print(f"Created fallback response: {fallback_content[:100]}...")
|
362 |
else:
|
363 |
content_preview = response.content[:300].replace('\n', ' ')
|
364 |
-
print(f"Response
|
365 |
except Exception as e:
|
366 |
print(f"Error in LLM invocation: {str(e)}")
|
367 |
# Create a fallback response in case of LLM errors
|
@@ -372,7 +370,7 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
372 |
|
373 |
# Extract the action JSON from the response text
|
374 |
action_json = extract_json_from_text(response.content)
|
375 |
-
print(f"Extracted action
|
376 |
|
377 |
assistant_response_message = AIMessage(content=response.content)
|
378 |
|
@@ -396,13 +394,11 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
396 |
tool_name = nested_json["action"]
|
397 |
tool_input = nested_json["action_input"]
|
398 |
print(f"Unwrapped nested JSON. New tool: {tool_name}")
|
399 |
-
print(f"New tool input: {tool_input}")
|
400 |
break
|
401 |
except json.JSONDecodeError:
|
402 |
continue
|
403 |
|
404 |
print(f"Using tool: {tool_name}")
|
405 |
-
print(f"Tool input: {tool_input}")
|
406 |
|
407 |
tool_call_id = f"call_{random.randint(1000000, 9999999)}"
|
408 |
|
@@ -413,6 +409,7 @@ def assistant(state: AgentState) -> Dict[str, Any]:
|
|
413 |
state_update["current_tool"] = None
|
414 |
state_update["action_input"] = None
|
415 |
|
|
|
416 |
return state_update
|
417 |
|
418 |
def extract_json_from_text(text: str) -> dict:
|
@@ -651,754 +648,562 @@ def extract_json_from_text(text: str) -> dict:
|
|
651 |
|
652 |
def python_code_node(state: AgentState) -> Dict[str, Any]:
|
653 |
"""Node that executes Python code."""
|
654 |
-
print("Python Code
|
655 |
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
672 |
try:
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
697 |
|
698 |
-
# Execute the code
|
699 |
try:
|
700 |
-
|
701 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
|
703 |
# Format the observation
|
704 |
tool_message = AIMessage(
|
705 |
content=f"Observation: {result.strip()}"
|
706 |
)
|
707 |
|
708 |
-
|
709 |
-
print("\n=== TOOL OBSERVATION ===")
|
710 |
-
content_preview = tool_message.content[:500] + "..." if len(tool_message.content) > 500 else tool_message.content
|
711 |
-
print(content_preview)
|
712 |
-
print("=== END OBSERVATION ===\n")
|
713 |
|
714 |
# Return the updated state
|
715 |
return {
|
716 |
"messages": state["messages"] + [tool_message],
|
717 |
-
"current_tool": None,
|
718 |
-
"action_input": None
|
719 |
}
|
720 |
except Exception as e:
|
721 |
-
error_message = f"Error
|
722 |
print(error_message)
|
723 |
tool_message = AIMessage(content=f"Observation: {error_message}")
|
|
|
724 |
return {
|
725 |
"messages": state["messages"] + [tool_message],
|
726 |
"current_tool": None,
|
727 |
"action_input": None
|
728 |
}
|
729 |
|
730 |
-
def webpage_scrape_node(state: AgentState) -> Dict[str, Any]:
|
731 |
-
"""Node that scrapes content from a specific webpage URL."""
|
732 |
-
print("Webpage Scrape Tool Called...\n\n")
|
733 |
-
|
734 |
-
# Extract tool arguments
|
735 |
-
action_input = state.get("action_input", {})
|
736 |
-
print(f"Webpage scrape action_input: {action_input}")
|
737 |
-
|
738 |
-
# Try different ways to extract the URL
|
739 |
-
url = ""
|
740 |
-
if isinstance(action_input, dict):
|
741 |
-
url = action_input.get("url", "")
|
742 |
-
elif isinstance(action_input, str):
|
743 |
-
url = action_input
|
744 |
-
|
745 |
-
print(f"Scraping URL: '{url}'")
|
746 |
-
|
747 |
-
# Safety check - don't run with empty URL
|
748 |
-
if not url:
|
749 |
-
result = "Error: No URL provided. Please provide a valid URL to scrape."
|
750 |
-
else:
|
751 |
-
# Call the webpage scraping function
|
752 |
-
result = scrape_webpage(url)
|
753 |
-
|
754 |
-
print(f"Scraping result length: {len(result)}")
|
755 |
-
|
756 |
-
# Format the observation to continue the ReAct cycle
|
757 |
-
# Always prefix with "Observation:" for consistency in the ReAct cycle
|
758 |
-
tool_message = AIMessage(
|
759 |
-
content=f"Observation: {result.strip()}"
|
760 |
-
)
|
761 |
-
|
762 |
-
# Print the observation that will be sent back to the assistant
|
763 |
-
print("\n=== TOOL OBSERVATION ===")
|
764 |
-
content_preview = tool_message.content[:500] + "..." if len(tool_message.content) > 500 else tool_message.content
|
765 |
-
print(content_preview)
|
766 |
-
print("=== END OBSERVATION ===\n")
|
767 |
-
|
768 |
-
# Return the updated state
|
769 |
-
return {
|
770 |
-
"messages": state["messages"] + [tool_message],
|
771 |
-
"current_tool": None, # Reset the current tool
|
772 |
-
"action_input": None # Clear the action input
|
773 |
-
}
|
774 |
-
|
775 |
def wikipedia_search_node(state: AgentState) -> Dict[str, Any]:
|
776 |
"""Node that processes Wikipedia search requests."""
|
777 |
-
print("Wikipedia Search
|
778 |
-
|
779 |
-
# Extract tool arguments
|
780 |
-
action_input = state.get("action_input", {})
|
781 |
-
print(f"Wikipedia search action_input: {action_input}")
|
782 |
-
|
783 |
-
# Extract query and num_results
|
784 |
-
query = ""
|
785 |
-
num_results = 3 # Default
|
786 |
-
|
787 |
-
if isinstance(action_input, dict):
|
788 |
-
query = action_input.get("query", "")
|
789 |
-
if "num_results" in action_input:
|
790 |
-
try:
|
791 |
-
num_results = int(action_input["num_results"])
|
792 |
-
except:
|
793 |
-
print("Invalid num_results, using default")
|
794 |
-
elif isinstance(action_input, str):
|
795 |
-
query = action_input
|
796 |
-
|
797 |
-
print(f"Searching Wikipedia for: '{query}' (max results: {num_results})")
|
798 |
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
825 |
|
826 |
def tavily_search_node(state: AgentState) -> Dict[str, Any]:
|
827 |
"""Node that processes Tavily search requests."""
|
828 |
-
print("Tavily Search
|
829 |
-
|
830 |
-
# Extract tool arguments
|
831 |
-
action_input = state.get("action_input", {})
|
832 |
-
print(f"Tavily search action_input: {action_input}")
|
833 |
-
|
834 |
-
# Extract query and search_depth
|
835 |
-
query = ""
|
836 |
-
search_depth = "basic" # Default
|
837 |
-
|
838 |
-
if isinstance(action_input, dict):
|
839 |
-
query = action_input.get("query", "")
|
840 |
-
if "search_depth" in action_input:
|
841 |
-
depth = action_input["search_depth"]
|
842 |
-
if depth in ["basic", "comprehensive"]:
|
843 |
-
search_depth = depth
|
844 |
-
elif isinstance(action_input, str):
|
845 |
-
query = action_input
|
846 |
-
|
847 |
-
print(f"Searching Tavily for: '{query}' (depth: {search_depth})")
|
848 |
-
|
849 |
-
# Safety check - don't run with empty query
|
850 |
-
if not query:
|
851 |
-
result = "Error: No search query provided. Please provide a valid query for Tavily search."
|
852 |
-
else:
|
853 |
-
# Call the Tavily search function
|
854 |
-
result = tavily_search(query, search_depth)
|
855 |
-
|
856 |
-
print(f"Tavily search result length: {len(result)}")
|
857 |
-
|
858 |
-
# Format the observation to continue the ReAct cycle
|
859 |
-
tool_message = AIMessage(
|
860 |
-
content=f"Observation: {result.strip()}"
|
861 |
-
)
|
862 |
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
875 |
|
876 |
def arxiv_search_node(state: AgentState) -> Dict[str, Any]:
|
877 |
"""Node that processes ArXiv search requests."""
|
878 |
-
print("ArXiv Search
|
879 |
-
|
880 |
-
# Extract tool arguments
|
881 |
-
action_input = state.get("action_input", {})
|
882 |
-
print(f"ArXiv search action_input: {action_input}")
|
883 |
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
# Return the updated state
|
923 |
-
return {
|
924 |
-
"messages": state["messages"] + [tool_message],
|
925 |
-
"current_tool": None, # Reset the current tool
|
926 |
-
"action_input": None # Clear the action input
|
927 |
-
}
|
928 |
|
929 |
def supabase_operation_node(state: AgentState) -> Dict[str, Any]:
|
930 |
"""Node that processes Supabase database operations."""
|
931 |
-
print("Supabase Operation
|
932 |
-
|
933 |
-
# Extract tool arguments
|
934 |
-
action_input = state.get("action_input", {})
|
935 |
-
print(f"Supabase operation action_input: {action_input}")
|
936 |
-
|
937 |
-
# Extract required parameters
|
938 |
-
operation_type = ""
|
939 |
-
table = ""
|
940 |
-
data = None
|
941 |
-
filters = None
|
942 |
-
|
943 |
-
if isinstance(action_input, dict):
|
944 |
-
operation_type = action_input.get("operation_type", "")
|
945 |
-
table = action_input.get("table", "")
|
946 |
-
data = action_input.get("data")
|
947 |
-
filters = action_input.get("filters")
|
948 |
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
977 |
|
978 |
def excel_to_text_node(state: AgentState) -> Dict[str, Any]:
|
979 |
"""Node that processes Excel to Markdown table conversions."""
|
980 |
-
print("Excel to Text
|
981 |
-
|
982 |
-
# Extract tool arguments
|
983 |
-
action_input = state.get("action_input", {})
|
984 |
-
print(f"Excel to text action_input: {action_input}")
|
985 |
-
|
986 |
-
# Extract required parameters
|
987 |
-
excel_path = ""
|
988 |
-
sheet_name = None
|
989 |
-
file_content = None
|
990 |
|
991 |
-
|
992 |
-
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
try:
|
998 |
-
file_content = base64.b64decode(action_input["file_content"])
|
999 |
-
print(f"Decoded attached file content, size: {len(file_content)} bytes")
|
1000 |
-
except Exception as e:
|
1001 |
-
print(f"Error decoding file content from action_input: {e}")
|
1002 |
|
1003 |
-
#
|
1004 |
-
if not
|
1005 |
-
|
1006 |
-
attachment_data = state["attachments"][excel_path]
|
1007 |
-
if attachment_data: # Make sure it's not empty
|
1008 |
-
file_content = base64.b64decode(attachment_data)
|
1009 |
-
print(f"Using attachment '{excel_path}' from state, size: {len(file_content)} bytes")
|
1010 |
-
except Exception as e:
|
1011 |
-
print(f"Error using attachment {excel_path}: {e}")
|
1012 |
-
|
1013 |
-
print(f"Excel to text: path={excel_path}, sheet={sheet_name or 'default'}, has_attachment={file_content is not None}")
|
1014 |
-
|
1015 |
-
# Safety check
|
1016 |
-
if not excel_path and not file_content:
|
1017 |
-
result = "Error: Either Excel file path or file content is required"
|
1018 |
-
elif not file_content:
|
1019 |
-
# If we have a path but no content, check if it's a local file that exists
|
1020 |
-
local_file_path = Path(excel_path).expanduser().resolve()
|
1021 |
-
if local_file_path.is_file():
|
1022 |
-
# Local file exists, use it directly
|
1023 |
-
result = excel_to_text(str(local_file_path), sheet_name, None)
|
1024 |
else:
|
1025 |
-
#
|
1026 |
-
result =
|
1027 |
-
|
1028 |
-
#
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
|
|
|
1050 |
|
1051 |
-
# Add a new node function for processing YouTube videos
|
1052 |
def process_youtube_video_node(state: AgentState) -> Dict[str, Any]:
|
1053 |
"""Node that processes YouTube videos."""
|
1054 |
-
print("YouTube Video Processing
|
1055 |
-
|
1056 |
-
# Extract tool arguments
|
1057 |
-
action_input = state.get("action_input", {})
|
1058 |
-
print(f"YouTube video processing action_input: {action_input}")
|
1059 |
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1068 |
try:
|
1069 |
-
|
1070 |
-
except:
|
1071 |
-
|
1072 |
-
|
1073 |
-
#
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
1095 |
-
|
1096 |
-
|
1097 |
-
# Print the observation that will be sent back to the assistant
|
1098 |
-
print("\n=== TOOL OBSERVATION ===")
|
1099 |
-
content_preview = tool_message.content[:500] + "..." if len(tool_message.content) > 500 else tool_message.content
|
1100 |
-
print(content_preview)
|
1101 |
-
print("=== END OBSERVATION ===\n")
|
1102 |
-
|
1103 |
-
# Return the updated state
|
1104 |
-
return {
|
1105 |
-
"messages": state["messages"] + [tool_message],
|
1106 |
-
"current_tool": None, # Reset the current tool
|
1107 |
-
"action_input": None # Clear the action input
|
1108 |
-
}
|
1109 |
|
1110 |
-
# Add after the existing tool nodes:
|
1111 |
def transcribe_audio_node(state: AgentState) -> Dict[str, Any]:
|
1112 |
"""Node that processes audio transcription requests."""
|
1113 |
-
print("Audio Transcription
|
1114 |
-
|
1115 |
-
# Extract tool arguments
|
1116 |
-
action_input = state.get("action_input", {})
|
1117 |
-
print(f"Audio transcription action_input: {action_input}")
|
1118 |
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
audio_path = action_input.get("audio_path", "")
|
1126 |
-
language = action_input.get("language")
|
1127 |
-
|
1128 |
-
# Check if there's attached file content (base64 encoded) directly in the action_input
|
1129 |
-
if "file_content" in action_input and action_input["file_content"]:
|
1130 |
-
try:
|
1131 |
-
file_content = base64.b64decode(action_input["file_content"])
|
1132 |
-
print(f"Decoded attached audio file content, size: {len(file_content)} bytes")
|
1133 |
-
except Exception as e:
|
1134 |
-
print(f"Error decoding file content from action_input: {e}")
|
1135 |
|
1136 |
-
#
|
1137 |
-
if not
|
1138 |
-
|
1139 |
-
attachment_data = state["attachments"][audio_path]
|
1140 |
-
if attachment_data: # Make sure it's not empty
|
1141 |
-
file_content = base64.b64decode(attachment_data)
|
1142 |
-
print(f"Using attachment '{audio_path}' from state, size: {len(file_content)} bytes")
|
1143 |
-
except Exception as e:
|
1144 |
-
print(f"Error using attachment {audio_path}: {e}")
|
1145 |
-
|
1146 |
-
print(f"Audio transcription: path={audio_path}, language={language or 'auto-detect'}, has_attachment={file_content is not None}")
|
1147 |
-
|
1148 |
-
# Safety check
|
1149 |
-
if not audio_path:
|
1150 |
-
result = "Error: Audio file path is required"
|
1151 |
-
elif not file_content:
|
1152 |
-
# If we have a path but no content, check if it's a local file that exists
|
1153 |
-
local_file_path = Path(audio_path).expanduser().resolve()
|
1154 |
-
if local_file_path.is_file():
|
1155 |
-
# Local file exists, use it directly
|
1156 |
-
result = transcribe_audio(str(local_file_path), None, language)
|
1157 |
else:
|
1158 |
-
#
|
1159 |
-
result =
|
1160 |
-
|
1161 |
-
#
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
1177 |
-
|
1178 |
-
|
1179 |
-
|
1180 |
-
|
1181 |
-
|
1182 |
-
|
|
|
1183 |
|
1184 |
def process_image_node(state: AgentState) -> Dict[str, Any]:
|
1185 |
"""Node that processes image analysis requests."""
|
1186 |
-
print("Image Processing
|
1187 |
-
|
1188 |
-
# Extract tool arguments
|
1189 |
-
action_input = state.get("action_input", {})
|
1190 |
-
print(f"Image processing action_input: {action_input}")
|
1191 |
|
1192 |
-
|
1193 |
-
|
1194 |
-
|
1195 |
-
|
1196 |
-
|
1197 |
-
|
1198 |
-
|
1199 |
-
image_path = action_input.get("image_path", "")
|
1200 |
-
image_url = action_input.get("image_url")
|
1201 |
|
1202 |
-
#
|
1203 |
-
if
|
1204 |
-
|
1205 |
-
|
1206 |
-
|
1207 |
-
|
1208 |
|
1209 |
-
#
|
1210 |
-
|
1211 |
-
|
1212 |
-
|
1213 |
-
print(f"Decoded attached image file content, size: {len(file_content)} bytes")
|
1214 |
-
except Exception as e:
|
1215 |
-
print(f"Error decoding file content from action_input: {e}")
|
1216 |
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
-
|
1221 |
-
|
1222 |
-
|
1223 |
-
|
1224 |
-
|
1225 |
-
|
1226 |
-
|
1227 |
-
|
1228 |
-
|
1229 |
-
|
1230 |
-
|
1231 |
-
|
1232 |
-
|
1233 |
-
|
1234 |
-
|
1235 |
-
if local_file_path.is_file():
|
1236 |
-
# Local file exists, use it directly
|
1237 |
-
result = process_image(str(local_file_path), image_url, None, analyze_content)
|
1238 |
-
else:
|
1239 |
-
# No file content and path doesn't exist as a local file
|
1240 |
-
result = f"Error: Image file not found at {local_file_path} and no attachment data available"
|
1241 |
-
else:
|
1242 |
-
# We have file content or URL, use it
|
1243 |
-
result = process_image(image_path, image_url, file_content, analyze_content)
|
1244 |
-
|
1245 |
-
print(f"Image processing result length: {len(result)}")
|
1246 |
-
|
1247 |
-
# Format the observation to continue the ReAct cycle
|
1248 |
-
tool_message = AIMessage(
|
1249 |
-
content=f"Observation: {result.strip()}"
|
1250 |
-
)
|
1251 |
-
|
1252 |
-
# Print the observation that will be sent back to the assistant
|
1253 |
-
print("\n=== TOOL OBSERVATION ===")
|
1254 |
-
content_preview = tool_message.content[:500] + "..." if len(tool_message.content) > 500 else tool_message.content
|
1255 |
-
print(content_preview)
|
1256 |
-
print("=== END OBSERVATION ===\n")
|
1257 |
-
|
1258 |
-
# Return the updated state
|
1259 |
-
return {
|
1260 |
-
"messages": state["messages"] + [tool_message],
|
1261 |
-
"current_tool": None, # Reset the current tool
|
1262 |
-
"action_input": None # Clear the action input
|
1263 |
-
}
|
1264 |
|
1265 |
def read_file_node(state: AgentState) -> Dict[str, Any]:
|
1266 |
"""Node that reads text file contents."""
|
1267 |
-
print("File Reading
|
1268 |
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
line_end = None
|
1277 |
-
file_content = None
|
1278 |
-
|
1279 |
-
if isinstance(action_input, dict):
|
1280 |
-
file_path = action_input.get("file_path", "")
|
1281 |
|
1282 |
-
#
|
1283 |
-
if
|
1284 |
-
|
1285 |
-
|
1286 |
-
|
1287 |
-
|
1288 |
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
1292 |
-
|
1293 |
-
print("Invalid line_end parameter, using default (None)")
|
1294 |
|
1295 |
-
|
1296 |
-
if "file_content" in action_input and action_input["file_content"]:
|
1297 |
-
try:
|
1298 |
-
file_content = base64.b64decode(action_input["file_content"])
|
1299 |
-
print(f"Decoded attached file content, size: {len(file_content)} bytes")
|
1300 |
-
except Exception as e:
|
1301 |
-
print(f"Error decoding file content from action_input: {e}")
|
1302 |
|
1303 |
-
#
|
1304 |
-
|
1305 |
-
|
1306 |
-
|
1307 |
-
|
1308 |
-
|
1309 |
-
|
1310 |
-
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
-
|
1317 |
-
|
1318 |
-
|
1319 |
-
# If we have a path but no content, check if it's a local file that exists
|
1320 |
-
local_file_path = Path(file_path).expanduser().resolve()
|
1321 |
-
if local_file_path.is_file():
|
1322 |
-
# Local file exists, use it directly
|
1323 |
-
result = read_file(str(local_file_path), None, line_start, line_end)
|
1324 |
-
else:
|
1325 |
-
# No file content and path doesn't exist as a local file
|
1326 |
-
result = f"Error: File not found at {local_file_path} and no attachment data available"
|
1327 |
-
else:
|
1328 |
-
# We have file content, use it
|
1329 |
-
result = read_file(file_path, file_content, line_start, line_end)
|
1330 |
-
|
1331 |
-
print(f"File reading result length: {len(result)}")
|
1332 |
-
|
1333 |
-
# Format the observation to continue the ReAct cycle
|
1334 |
-
tool_message = AIMessage(
|
1335 |
-
content=f"Observation: {result.strip()}"
|
1336 |
-
)
|
1337 |
-
|
1338 |
-
# Print the observation that will be sent back to the assistant
|
1339 |
-
print("\n=== TOOL OBSERVATION ===")
|
1340 |
-
content_preview = tool_message.content[:500] + "..." if len(tool_message.content) > 500 else tool_message.content
|
1341 |
-
print(content_preview)
|
1342 |
-
print("=== END OBSERVATION ===\n")
|
1343 |
-
|
1344 |
-
# Return the updated state
|
1345 |
-
return {
|
1346 |
-
"messages": state["messages"] + [tool_message],
|
1347 |
-
"current_tool": None, # Reset the current tool
|
1348 |
-
"action_input": None # Clear the action input
|
1349 |
-
}
|
1350 |
|
1351 |
def process_online_document_node(state: AgentState) -> Dict[str, Any]:
|
1352 |
"""Node that processes online PDFs and images."""
|
1353 |
-
print("Online Document Processing
|
1354 |
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
1372 |
-
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
-
|
1378 |
-
|
1379 |
-
|
1380 |
-
|
1381 |
-
|
1382 |
-
|
1383 |
-
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
|
1388 |
-
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
|
1397 |
-
return {
|
1398 |
-
"messages": state["messages"] + [tool_message],
|
1399 |
-
"current_tool": None, # Reset the current tool
|
1400 |
-
"action_input": None # Clear the action input
|
1401 |
-
}
|
1402 |
|
1403 |
# Router function to direct to the correct tool
|
1404 |
def router(state: AgentState) -> str:
|
|
|
270 |
"""Assistant node that processes messages and decides on next action."""
|
271 |
from langchain_core.messages import AIMessage # Add import at the start of the function
|
272 |
|
273 |
+
print("\n=== Assistant Node ===")
|
274 |
|
275 |
full_current_history = state["messages"]
|
276 |
iteration_count = state.get("iteration_count", 0)
|
277 |
iteration_count += 1 # Increment for the current call
|
278 |
+
print(f"Iteration: {iteration_count}")
|
279 |
|
280 |
# Prepare messages for the LLM
|
281 |
system_msg = SystemMessage(content=SYSTEM_PROMPT)
|
|
|
289 |
# Prune if it's time (e.g., after every 5th completed iteration, so check for current iteration 6, 11, etc.)
|
290 |
# Iteration 1-5: no pruning. Iteration 6: prune.
|
291 |
if iteration_count > 5 and (iteration_count - 1) % 5 == 0:
|
292 |
+
print(f"Pruning message history at iteration {iteration_count}")
|
293 |
llm_input_core_messages = prune_messages_for_llm(core_history, num_recent_to_keep=6)
|
294 |
else:
|
295 |
llm_input_core_messages = core_history
|
|
|
300 |
# Get response from the assistant
|
301 |
try:
|
302 |
response = chat_with_tools.invoke(messages_for_llm, stop=["Observation:"])
|
|
|
303 |
|
304 |
# Check for empty response
|
305 |
if response is None or not hasattr(response, 'content') or not response.content or len(response.content.strip()) < 20:
|
|
|
319 |
|
320 |
# Create an appropriate fallback response
|
321 |
if last_observation and "python_code" in state.get("current_tool", ""):
|
|
|
322 |
print("Creating fallback response for empty response after Python code execution")
|
323 |
fallback_content = (
|
324 |
"Thought: I've analyzed the results of the code execution. Based on the observations, "
|
|
|
359 |
print(f"Created fallback response: {fallback_content[:100]}...")
|
360 |
else:
|
361 |
content_preview = response.content[:300].replace('\n', ' ')
|
362 |
+
print(f"Response preview: {content_preview}...")
|
363 |
except Exception as e:
|
364 |
print(f"Error in LLM invocation: {str(e)}")
|
365 |
# Create a fallback response in case of LLM errors
|
|
|
370 |
|
371 |
# Extract the action JSON from the response text
|
372 |
action_json = extract_json_from_text(response.content)
|
373 |
+
print(f"Extracted action: {action_json.get('action') if action_json else 'None'}")
|
374 |
|
375 |
assistant_response_message = AIMessage(content=response.content)
|
376 |
|
|
|
394 |
tool_name = nested_json["action"]
|
395 |
tool_input = nested_json["action_input"]
|
396 |
print(f"Unwrapped nested JSON. New tool: {tool_name}")
|
|
|
397 |
break
|
398 |
except json.JSONDecodeError:
|
399 |
continue
|
400 |
|
401 |
print(f"Using tool: {tool_name}")
|
|
|
402 |
|
403 |
tool_call_id = f"call_{random.randint(1000000, 9999999)}"
|
404 |
|
|
|
409 |
state_update["current_tool"] = None
|
410 |
state_update["action_input"] = None
|
411 |
|
412 |
+
print("=== End Assistant Node ===\n")
|
413 |
return state_update
|
414 |
|
415 |
def extract_json_from_text(text: str) -> dict:
|
|
|
648 |
|
649 |
def python_code_node(state: AgentState) -> Dict[str, Any]:
|
650 |
"""Node that executes Python code."""
|
651 |
+
print("\n=== Python Code Node ===")
|
652 |
|
653 |
+
try:
|
654 |
+
# Extract tool arguments
|
655 |
+
action_input = state.get("action_input", {})
|
656 |
+
print(f"Input: {action_input.get('code', '')[:100]}...")
|
657 |
+
|
658 |
+
# Get the code string
|
659 |
+
code = ""
|
660 |
+
if isinstance(action_input, dict):
|
661 |
+
code = action_input.get("code", "")
|
662 |
+
elif isinstance(action_input, str):
|
663 |
+
code = action_input
|
664 |
+
|
665 |
+
print(f"Original code field (first 100 chars): {code[:100]}")
|
666 |
+
|
667 |
+
def extract_code_from_json(json_str):
|
668 |
+
"""Recursively extract code from nested JSON structures."""
|
669 |
+
try:
|
670 |
+
parsed = json.loads(json_str)
|
671 |
+
if isinstance(parsed, dict):
|
672 |
+
# Check for direct code field
|
673 |
+
if "code" in parsed:
|
674 |
+
return parsed["code"]
|
675 |
+
# Check for nested action_input structure
|
676 |
+
if "action_input" in parsed:
|
677 |
+
inner_input = parsed["action_input"]
|
678 |
+
if isinstance(inner_input, dict):
|
679 |
+
if "code" in inner_input:
|
680 |
+
return inner_input["code"]
|
681 |
+
# If inner_input is also JSON string, recurse
|
682 |
+
if isinstance(inner_input.get("code", ""), str) and inner_input["code"].strip().startswith("{"):
|
683 |
+
return extract_code_from_json(inner_input["code"])
|
684 |
+
return json_str
|
685 |
+
except:
|
686 |
+
return json_str
|
687 |
+
|
688 |
+
# Handle nested JSON structures
|
689 |
+
if isinstance(code, str) and code.strip().startswith("{"):
|
690 |
+
code = extract_code_from_json(code)
|
691 |
+
print("Extracted code from JSON structure")
|
692 |
+
|
693 |
+
print(f"Final code to execute: {code[:100]}...")
|
694 |
+
|
695 |
+
# Execute the code
|
696 |
try:
|
697 |
+
result = run_python_code(code)
|
698 |
+
print(f"Execution successful")
|
699 |
+
|
700 |
+
# Format the observation
|
701 |
+
tool_message = AIMessage(
|
702 |
+
content=f"Observation: {result.strip()}"
|
703 |
+
)
|
704 |
+
|
705 |
+
# Print the observation that will be sent back to the assistant
|
706 |
+
print("=== End Python Code Node ===\n")
|
707 |
+
|
708 |
+
# Return the updated state
|
709 |
+
return {
|
710 |
+
"messages": state["messages"] + [tool_message],
|
711 |
+
"current_tool": None, # Reset the current tool
|
712 |
+
"action_input": None # Clear the action input
|
713 |
+
}
|
714 |
+
except Exception as e:
|
715 |
+
error_message = f"Error executing Python code: {str(e)}"
|
716 |
+
print(error_message)
|
717 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
718 |
+
print("=== End Python Code Node ===\n")
|
719 |
+
return {
|
720 |
+
"messages": state["messages"] + [tool_message],
|
721 |
+
"current_tool": None,
|
722 |
+
"action_input": None
|
723 |
+
}
|
724 |
+
except Exception as e:
|
725 |
+
error_message = f"Error in Python code node: {str(e)}"
|
726 |
+
print(error_message)
|
727 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
728 |
+
print("=== End Python Code Node ===\n")
|
729 |
+
return {
|
730 |
+
"messages": state["messages"] + [tool_message],
|
731 |
+
"current_tool": None,
|
732 |
+
"action_input": None
|
733 |
+
}
|
734 |
+
|
735 |
+
def webpage_scrape_node(state: AgentState) -> Dict[str, Any]:
|
736 |
+
"""Node that scrapes content from a specific webpage URL."""
|
737 |
+
print("\n=== Webpage Scrape Node ===")
|
738 |
|
|
|
739 |
try:
|
740 |
+
# Extract tool arguments
|
741 |
+
action_input = state.get("action_input", {})
|
742 |
+
url = action_input.get("url", "") if isinstance(action_input, dict) else action_input
|
743 |
+
print(f"URL: {url}")
|
744 |
+
|
745 |
+
# Safety check - don't run with empty URL
|
746 |
+
if not url:
|
747 |
+
result = "Error: No URL provided. Please provide a valid URL to scrape."
|
748 |
+
else:
|
749 |
+
# Call the webpage scraping function
|
750 |
+
result = scrape_webpage(url)
|
751 |
|
752 |
# Format the observation
|
753 |
tool_message = AIMessage(
|
754 |
content=f"Observation: {result.strip()}"
|
755 |
)
|
756 |
|
757 |
+
print("=== End Webpage Scrape Node ===\n")
|
|
|
|
|
|
|
|
|
758 |
|
759 |
# Return the updated state
|
760 |
return {
|
761 |
"messages": state["messages"] + [tool_message],
|
762 |
+
"current_tool": None,
|
763 |
+
"action_input": None
|
764 |
}
|
765 |
except Exception as e:
|
766 |
+
error_message = f"Error in webpage scrape node: {str(e)}"
|
767 |
print(error_message)
|
768 |
tool_message = AIMessage(content=f"Observation: {error_message}")
|
769 |
+
print("=== End Webpage Scrape Node ===\n")
|
770 |
return {
|
771 |
"messages": state["messages"] + [tool_message],
|
772 |
"current_tool": None,
|
773 |
"action_input": None
|
774 |
}
|
775 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
def wikipedia_search_node(state: AgentState) -> Dict[str, Any]:
|
777 |
"""Node that processes Wikipedia search requests."""
|
778 |
+
print("\n=== Wikipedia Search Node ===")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
779 |
|
780 |
+
try:
|
781 |
+
# Extract tool arguments
|
782 |
+
action_input = state.get("action_input", {})
|
783 |
+
query = action_input.get("query", "") if isinstance(action_input, dict) else action_input
|
784 |
+
num_results = action_input.get("num_results", 3) if isinstance(action_input, dict) else 3
|
785 |
+
print(f"Query: {query} (max results: {num_results})")
|
786 |
+
|
787 |
+
# Safety check - don't run with empty query
|
788 |
+
if not query:
|
789 |
+
result = "Error: No search query provided. Please provide a valid query for Wikipedia search."
|
790 |
+
else:
|
791 |
+
# Call the Wikipedia search function
|
792 |
+
result = wikipedia_search(query, num_results)
|
793 |
+
|
794 |
+
# Format the observation
|
795 |
+
tool_message = AIMessage(
|
796 |
+
content=f"Observation: {result.strip()}"
|
797 |
+
)
|
798 |
+
|
799 |
+
print("=== End Wikipedia Search Node ===\n")
|
800 |
+
|
801 |
+
# Return the updated state
|
802 |
+
return {
|
803 |
+
"messages": state["messages"] + [tool_message],
|
804 |
+
"current_tool": None,
|
805 |
+
"action_input": None
|
806 |
+
}
|
807 |
+
except Exception as e:
|
808 |
+
error_message = f"Error in Wikipedia search node: {str(e)}"
|
809 |
+
print(error_message)
|
810 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
811 |
+
print("=== End Wikipedia Search Node ===\n")
|
812 |
+
return {
|
813 |
+
"messages": state["messages"] + [tool_message],
|
814 |
+
"current_tool": None,
|
815 |
+
"action_input": None
|
816 |
+
}
|
817 |
|
818 |
def tavily_search_node(state: AgentState) -> Dict[str, Any]:
|
819 |
"""Node that processes Tavily search requests."""
|
820 |
+
print("\n=== Tavily Search Node ===")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
821 |
|
822 |
+
try:
|
823 |
+
# Extract tool arguments
|
824 |
+
action_input = state.get("action_input", {})
|
825 |
+
query = action_input.get("query", "") if isinstance(action_input, dict) else action_input
|
826 |
+
search_depth = action_input.get("search_depth", "basic") if isinstance(action_input, dict) else "basic"
|
827 |
+
print(f"Query: {query} (depth: {search_depth})")
|
828 |
+
|
829 |
+
# Safety check - don't run with empty query
|
830 |
+
if not query:
|
831 |
+
result = "Error: No search query provided. Please provide a valid query for Tavily search."
|
832 |
+
else:
|
833 |
+
# Call the Tavily search function
|
834 |
+
result = tavily_search(query, search_depth)
|
835 |
+
|
836 |
+
# Format the observation
|
837 |
+
tool_message = AIMessage(
|
838 |
+
content=f"Observation: {result.strip()}"
|
839 |
+
)
|
840 |
+
|
841 |
+
print("=== End Tavily Search Node ===\n")
|
842 |
+
|
843 |
+
# Return the updated state
|
844 |
+
return {
|
845 |
+
"messages": state["messages"] + [tool_message],
|
846 |
+
"current_tool": None,
|
847 |
+
"action_input": None
|
848 |
+
}
|
849 |
+
except Exception as e:
|
850 |
+
error_message = f"Error in Tavily search node: {str(e)}"
|
851 |
+
print(error_message)
|
852 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
853 |
+
print("=== End Tavily Search Node ===\n")
|
854 |
+
return {
|
855 |
+
"messages": state["messages"] + [tool_message],
|
856 |
+
"current_tool": None,
|
857 |
+
"action_input": None
|
858 |
+
}
|
859 |
|
860 |
def arxiv_search_node(state: AgentState) -> Dict[str, Any]:
|
861 |
"""Node that processes ArXiv search requests."""
|
862 |
+
print("\n=== ArXiv Search Node ===")
|
|
|
|
|
|
|
|
|
863 |
|
864 |
+
try:
|
865 |
+
# Extract tool arguments
|
866 |
+
action_input = state.get("action_input", {})
|
867 |
+
query = action_input.get("query", "") if isinstance(action_input, dict) else action_input
|
868 |
+
max_results = action_input.get("max_results", 5) if isinstance(action_input, dict) else 5
|
869 |
+
print(f"Query: {query} (max results: {max_results})")
|
870 |
+
|
871 |
+
# Safety check - don't run with empty query
|
872 |
+
if not query:
|
873 |
+
result = "Error: No search query provided. Please provide a valid query for ArXiv search."
|
874 |
+
else:
|
875 |
+
# Call the ArXiv search function
|
876 |
+
result = arxiv_search(query, max_results)
|
877 |
+
|
878 |
+
# Format the observation
|
879 |
+
tool_message = AIMessage(
|
880 |
+
content=f"Observation: {result.strip()}"
|
881 |
+
)
|
882 |
+
|
883 |
+
print("=== End ArXiv Search Node ===\n")
|
884 |
+
|
885 |
+
# Return the updated state
|
886 |
+
return {
|
887 |
+
"messages": state["messages"] + [tool_message],
|
888 |
+
"current_tool": None,
|
889 |
+
"action_input": None
|
890 |
+
}
|
891 |
+
except Exception as e:
|
892 |
+
error_message = f"Error in ArXiv search node: {str(e)}"
|
893 |
+
print(error_message)
|
894 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
895 |
+
print("=== End ArXiv Search Node ===\n")
|
896 |
+
return {
|
897 |
+
"messages": state["messages"] + [tool_message],
|
898 |
+
"current_tool": None,
|
899 |
+
"action_input": None
|
900 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
901 |
|
902 |
def supabase_operation_node(state: AgentState) -> Dict[str, Any]:
|
903 |
"""Node that processes Supabase database operations."""
|
904 |
+
print("\n=== Supabase Operation Node ===")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
905 |
|
906 |
+
try:
|
907 |
+
# Extract tool arguments
|
908 |
+
action_input = state.get("action_input", {})
|
909 |
+
operation_type = action_input.get("operation_type", "") if isinstance(action_input, dict) else ""
|
910 |
+
table = action_input.get("table", "") if isinstance(action_input, dict) else ""
|
911 |
+
print(f"Operation: {operation_type} on table {table}")
|
912 |
+
|
913 |
+
# Safety check
|
914 |
+
if not operation_type or not table:
|
915 |
+
result = "Error: Both operation_type and table are required. operation_type should be one of: insert, select, update, delete"
|
916 |
+
else:
|
917 |
+
# Call the Supabase operation function
|
918 |
+
result = supabase_operation(operation_type, table, action_input.get("data"), action_input.get("filters"))
|
919 |
+
|
920 |
+
# Format the observation
|
921 |
+
tool_message = AIMessage(
|
922 |
+
content=f"Observation: {result.strip()}"
|
923 |
+
)
|
924 |
+
|
925 |
+
print("=== End Supabase Operation Node ===\n")
|
926 |
+
|
927 |
+
# Return the updated state
|
928 |
+
return {
|
929 |
+
"messages": state["messages"] + [tool_message],
|
930 |
+
"current_tool": None,
|
931 |
+
"action_input": None
|
932 |
+
}
|
933 |
+
except Exception as e:
|
934 |
+
error_message = f"Error in Supabase operation node: {str(e)}"
|
935 |
+
print(error_message)
|
936 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
937 |
+
print("=== End Supabase Operation Node ===\n")
|
938 |
+
return {
|
939 |
+
"messages": state["messages"] + [tool_message],
|
940 |
+
"current_tool": None,
|
941 |
+
"action_input": None
|
942 |
+
}
|
943 |
|
944 |
def excel_to_text_node(state: AgentState) -> Dict[str, Any]:
|
945 |
"""Node that processes Excel to Markdown table conversions."""
|
946 |
+
print("\n=== Excel to Text Node ===")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
947 |
|
948 |
+
try:
|
949 |
+
# Extract tool arguments
|
950 |
+
action_input = state.get("action_input", {})
|
951 |
+
excel_path = action_input.get("excel_path", "") if isinstance(action_input, dict) else ""
|
952 |
+
sheet_name = action_input.get("sheet_name") if isinstance(action_input, dict) else None
|
953 |
+
print(f"File: {excel_path} (sheet: {sheet_name or 'default'})")
|
|
|
|
|
|
|
|
|
|
|
954 |
|
955 |
+
# Safety check
|
956 |
+
if not excel_path:
|
957 |
+
result = "Error: Excel file path is required"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
958 |
else:
|
959 |
+
# Call the Excel to text function
|
960 |
+
result = excel_to_text(excel_path, sheet_name, action_input.get("file_content"))
|
961 |
+
|
962 |
+
# Format the observation
|
963 |
+
tool_message = AIMessage(
|
964 |
+
content=f"Observation: {result.strip()}"
|
965 |
+
)
|
966 |
+
|
967 |
+
print("=== End Excel to Text Node ===\n")
|
968 |
+
|
969 |
+
# Return the updated state
|
970 |
+
return {
|
971 |
+
"messages": state["messages"] + [tool_message],
|
972 |
+
"current_tool": None,
|
973 |
+
"action_input": None
|
974 |
+
}
|
975 |
+
except Exception as e:
|
976 |
+
error_message = f"Error in Excel to text node: {str(e)}"
|
977 |
+
print(error_message)
|
978 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
979 |
+
print("=== End Excel to Text Node ===\n")
|
980 |
+
return {
|
981 |
+
"messages": state["messages"] + [tool_message],
|
982 |
+
"current_tool": None,
|
983 |
+
"action_input": None
|
984 |
+
}
|
985 |
|
|
|
986 |
def process_youtube_video_node(state: AgentState) -> Dict[str, Any]:
|
987 |
"""Node that processes YouTube videos."""
|
988 |
+
print("\n=== YouTube Video Processing Node ===")
|
|
|
|
|
|
|
|
|
989 |
|
990 |
+
try:
|
991 |
+
# Extract tool arguments
|
992 |
+
action_input = state.get("action_input", {})
|
993 |
+
url = action_input.get("url", "") if isinstance(action_input, dict) else action_input
|
994 |
+
summarize = action_input.get("summarize", True) if isinstance(action_input, dict) else True
|
995 |
+
print(f"URL: {url} (summarize: {summarize})")
|
996 |
+
|
997 |
+
# Safety check - don't run with empty URL
|
998 |
+
if not url:
|
999 |
+
result = "Error: No URL provided. Please provide a valid YouTube URL."
|
1000 |
+
elif not url.startswith(("http://", "https://")) or not ("youtube.com" in url or "youtu.be" in url):
|
1001 |
+
result = f"Error: Invalid YouTube URL format: {url}. Please provide a valid URL starting with http:// or https:// and containing youtube.com or youtu.be."
|
1002 |
+
else:
|
1003 |
+
# Call the YouTube processing function
|
1004 |
try:
|
1005 |
+
result = process_youtube_video(url, summarize)
|
1006 |
+
except Exception as e:
|
1007 |
+
result = f"Error processing YouTube video: {str(e)}\n\nThis could be due to:\n- The video is private or has been removed\n- Network connectivity issues\n- YouTube API changes\n- Rate limiting"
|
1008 |
+
|
1009 |
+
# Format the observation
|
1010 |
+
tool_message = AIMessage(
|
1011 |
+
content=f"Observation: {result.strip()}"
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
print("=== End YouTube Video Processing Node ===\n")
|
1015 |
+
|
1016 |
+
# Return the updated state
|
1017 |
+
return {
|
1018 |
+
"messages": state["messages"] + [tool_message],
|
1019 |
+
"current_tool": None,
|
1020 |
+
"action_input": None
|
1021 |
+
}
|
1022 |
+
except Exception as e:
|
1023 |
+
error_message = f"Error in YouTube video processing node: {str(e)}"
|
1024 |
+
print(error_message)
|
1025 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
1026 |
+
print("=== End YouTube Video Processing Node ===\n")
|
1027 |
+
return {
|
1028 |
+
"messages": state["messages"] + [tool_message],
|
1029 |
+
"current_tool": None,
|
1030 |
+
"action_input": None
|
1031 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1032 |
|
|
|
1033 |
def transcribe_audio_node(state: AgentState) -> Dict[str, Any]:
|
1034 |
"""Node that processes audio transcription requests."""
|
1035 |
+
print("\n=== Audio Transcription Node ===")
|
|
|
|
|
|
|
|
|
1036 |
|
1037 |
+
try:
|
1038 |
+
# Extract tool arguments
|
1039 |
+
action_input = state.get("action_input", {})
|
1040 |
+
audio_path = action_input.get("audio_path", "") if isinstance(action_input, dict) else ""
|
1041 |
+
language = action_input.get("language") if isinstance(action_input, dict) else None
|
1042 |
+
print(f"File: {audio_path} (language: {language or 'auto-detect'})")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1043 |
|
1044 |
+
# Safety check
|
1045 |
+
if not audio_path:
|
1046 |
+
result = "Error: Audio file path is required"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1047 |
else:
|
1048 |
+
# Call the transcribe audio function
|
1049 |
+
result = transcribe_audio(audio_path, action_input.get("file_content"), language)
|
1050 |
+
|
1051 |
+
# Format the observation
|
1052 |
+
tool_message = AIMessage(
|
1053 |
+
content=f"Observation: {result.strip()}"
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
print("=== End Audio Transcription Node ===\n")
|
1057 |
+
|
1058 |
+
# Return the updated state
|
1059 |
+
return {
|
1060 |
+
"messages": state["messages"] + [tool_message],
|
1061 |
+
"current_tool": None,
|
1062 |
+
"action_input": None
|
1063 |
+
}
|
1064 |
+
except Exception as e:
|
1065 |
+
error_message = f"Error in audio transcription node: {str(e)}"
|
1066 |
+
print(error_message)
|
1067 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
1068 |
+
print("=== End Audio Transcription Node ===\n")
|
1069 |
+
return {
|
1070 |
+
"messages": state["messages"] + [tool_message],
|
1071 |
+
"current_tool": None,
|
1072 |
+
"action_input": None
|
1073 |
+
}
|
1074 |
|
1075 |
def process_image_node(state: AgentState) -> Dict[str, Any]:
|
1076 |
"""Node that processes image analysis requests."""
|
1077 |
+
print("\n=== Image Processing Node ===")
|
|
|
|
|
|
|
|
|
1078 |
|
1079 |
+
try:
|
1080 |
+
# Extract tool arguments
|
1081 |
+
action_input = state.get("action_input", {})
|
1082 |
+
image_path = action_input.get("image_path", "") if isinstance(action_input, dict) else ""
|
1083 |
+
image_url = action_input.get("image_url") if isinstance(action_input, dict) else None
|
1084 |
+
analyze_content = action_input.get("analyze_content", True) if isinstance(action_input, dict) else True
|
1085 |
+
print(f"Source: {image_url or image_path} (analyze: {analyze_content})")
|
|
|
|
|
1086 |
|
1087 |
+
# Safety check
|
1088 |
+
if not image_path and not image_url:
|
1089 |
+
result = "Error: Either image path or image URL is required"
|
1090 |
+
else:
|
1091 |
+
# Call the process image function
|
1092 |
+
result = process_image(image_path, image_url, action_input.get("file_content"), analyze_content)
|
1093 |
|
1094 |
+
# Format the observation
|
1095 |
+
tool_message = AIMessage(
|
1096 |
+
content=f"Observation: {result.strip()}"
|
1097 |
+
)
|
|
|
|
|
|
|
1098 |
|
1099 |
+
print("=== End Image Processing Node ===\n")
|
1100 |
+
|
1101 |
+
# Return the updated state
|
1102 |
+
return {
|
1103 |
+
"messages": state["messages"] + [tool_message],
|
1104 |
+
"current_tool": None,
|
1105 |
+
"action_input": None
|
1106 |
+
}
|
1107 |
+
except Exception as e:
|
1108 |
+
error_message = f"Error in image processing node: {str(e)}"
|
1109 |
+
print(error_message)
|
1110 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
1111 |
+
print("=== End Image Processing Node ===\n")
|
1112 |
+
return {
|
1113 |
+
"messages": state["messages"] + [tool_message],
|
1114 |
+
"current_tool": None,
|
1115 |
+
"action_input": None
|
1116 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1117 |
|
1118 |
def read_file_node(state: AgentState) -> Dict[str, Any]:
|
1119 |
"""Node that reads text file contents."""
|
1120 |
+
print("\n=== File Reading Node ===")
|
1121 |
|
1122 |
+
try:
|
1123 |
+
# Extract tool arguments
|
1124 |
+
action_input = state.get("action_input", {})
|
1125 |
+
file_path = action_input.get("file_path", "") if isinstance(action_input, dict) else ""
|
1126 |
+
line_start = action_input.get("line_start") if isinstance(action_input, dict) else None
|
1127 |
+
line_end = action_input.get("line_end") if isinstance(action_input, dict) else None
|
1128 |
+
print(f"File: {file_path} (lines: {line_start}-{line_end if line_end else 'end'})")
|
|
|
|
|
|
|
|
|
|
|
1129 |
|
1130 |
+
# Safety check
|
1131 |
+
if not file_path:
|
1132 |
+
result = "Error: File path is required"
|
1133 |
+
else:
|
1134 |
+
# Call the read file function
|
1135 |
+
result = read_file(file_path, action_input.get("file_content"), line_start, line_end)
|
1136 |
|
1137 |
+
# Format the observation
|
1138 |
+
tool_message = AIMessage(
|
1139 |
+
content=f"Observation: {result.strip()}"
|
1140 |
+
)
|
|
|
1141 |
|
1142 |
+
print("=== End File Reading Node ===\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
1143 |
|
1144 |
+
# Return the updated state
|
1145 |
+
return {
|
1146 |
+
"messages": state["messages"] + [tool_message],
|
1147 |
+
"current_tool": None,
|
1148 |
+
"action_input": None
|
1149 |
+
}
|
1150 |
+
except Exception as e:
|
1151 |
+
error_message = f"Error in file reading node: {str(e)}"
|
1152 |
+
print(error_message)
|
1153 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
1154 |
+
print("=== End File Reading Node ===\n")
|
1155 |
+
return {
|
1156 |
+
"messages": state["messages"] + [tool_message],
|
1157 |
+
"current_tool": None,
|
1158 |
+
"action_input": None
|
1159 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1160 |
|
1161 |
def process_online_document_node(state: AgentState) -> Dict[str, Any]:
|
1162 |
"""Node that processes online PDFs and images."""
|
1163 |
+
print("\n=== Online Document Processing Node ===")
|
1164 |
|
1165 |
+
try:
|
1166 |
+
# Extract tool arguments
|
1167 |
+
action_input = state.get("action_input", {})
|
1168 |
+
url = action_input.get("url", "") if isinstance(action_input, dict) else action_input
|
1169 |
+
doc_type = action_input.get("doc_type", "auto") if isinstance(action_input, dict) else "auto"
|
1170 |
+
print(f"URL: {url} (type: {doc_type})")
|
1171 |
+
|
1172 |
+
# Safety check - don't run with empty URL
|
1173 |
+
if not url:
|
1174 |
+
result = "Error: No URL provided. Please provide a valid URL to process."
|
1175 |
+
elif not url.startswith(("http://", "https://")):
|
1176 |
+
result = f"Error: Invalid URL format: {url}. Please provide a valid URL starting with http:// or https://."
|
1177 |
+
else:
|
1178 |
+
# Call the online document processing function
|
1179 |
+
try:
|
1180 |
+
result = process_online_document(url, doc_type)
|
1181 |
+
except Exception as e:
|
1182 |
+
result = f"Error processing online document: {str(e)}\n\nThis could be due to:\n- The document is not accessible\n- Network connectivity issues\n- Unsupported document type\n- Rate limiting"
|
1183 |
+
|
1184 |
+
# Format the observation
|
1185 |
+
tool_message = AIMessage(
|
1186 |
+
content=f"Observation: {result.strip()}"
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
print("=== End Online Document Processing Node ===\n")
|
1190 |
+
|
1191 |
+
# Return the updated state
|
1192 |
+
return {
|
1193 |
+
"messages": state["messages"] + [tool_message],
|
1194 |
+
"current_tool": None,
|
1195 |
+
"action_input": None
|
1196 |
+
}
|
1197 |
+
except Exception as e:
|
1198 |
+
error_message = f"Error in online document processing node: {str(e)}"
|
1199 |
+
print(error_message)
|
1200 |
+
tool_message = AIMessage(content=f"Observation: {error_message}")
|
1201 |
+
print("=== End Online Document Processing Node ===\n")
|
1202 |
+
return {
|
1203 |
+
"messages": state["messages"] + [tool_message],
|
1204 |
+
"current_tool": None,
|
1205 |
+
"action_input": None
|
1206 |
+
}
|
|
|
|
|
|
|
|
|
|
|
1207 |
|
1208 |
# Router function to direct to the correct tool
|
1209 |
def router(state: AgentState) -> str:
|
app.py
CHANGED
@@ -5,11 +5,16 @@ import inspect
|
|
5 |
import pandas as pd
|
6 |
import base64
|
7 |
from agent import TurboNerd
|
|
|
|
|
8 |
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
ALLOWED_FILE_EXTENSIONS = [".mp3", ".xlsx", ".py", ".png", ".jpg", ".jpeg", ".gif", ".txt", ".md", ".json", ".csv", ".yml", ".yaml", ".html", ".css", ".js"]
|
12 |
|
|
|
|
|
|
|
13 |
# --- Basic Agent Definition ---
|
14 |
class BasicAgent:
|
15 |
def __init__(self):
|
@@ -31,6 +36,19 @@ def chat_with_agent(question: str, file_uploads, history: list) -> tuple:
|
|
31 |
return history, ""
|
32 |
|
33 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Initialize agent
|
35 |
agent = TurboNerd()
|
36 |
|
@@ -93,6 +111,10 @@ def chat_with_agent(question: str, file_uploads, history: list) -> tuple:
|
|
93 |
else:
|
94 |
formatted_response = response
|
95 |
|
|
|
|
|
|
|
|
|
96 |
# Add question and response to history in the correct format (as tuples)
|
97 |
history.append((question, formatted_response))
|
98 |
|
|
|
5 |
import pandas as pd
|
6 |
import base64
|
7 |
from agent import TurboNerd
|
8 |
+
from rate_limiter import QueryRateLimiter
|
9 |
+
from flask import request
|
10 |
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
ALLOWED_FILE_EXTENSIONS = [".mp3", ".xlsx", ".py", ".png", ".jpg", ".jpeg", ".gif", ".txt", ".md", ".json", ".csv", ".yml", ".yaml", ".html", ".css", ".js"]
|
14 |
|
15 |
+
# Initialize rate limiter (10 queries per hour)
|
16 |
+
query_limiter = QueryRateLimiter(max_queries_per_hour=5)
|
17 |
+
|
18 |
# --- Basic Agent Definition ---
|
19 |
class BasicAgent:
|
20 |
def __init__(self):
|
|
|
36 |
return history, ""
|
37 |
|
38 |
try:
|
39 |
+
# Get client IP or session ID for rate limiting
|
40 |
+
user_id = request.remote_addr if request else "127.0.0.1"
|
41 |
+
|
42 |
+
# Check rate limit
|
43 |
+
if not query_limiter.is_allowed(user_id):
|
44 |
+
remaining_time = query_limiter.get_time_until_reset(user_id)
|
45 |
+
error_message = (
|
46 |
+
f"Rate limit exceeded. You can make {query_limiter.max_queries} queries per hour. "
|
47 |
+
f"Please wait {int(remaining_time)} seconds before trying again."
|
48 |
+
)
|
49 |
+
history.append((question, error_message))
|
50 |
+
return history, ""
|
51 |
+
|
52 |
# Initialize agent
|
53 |
agent = TurboNerd()
|
54 |
|
|
|
111 |
else:
|
112 |
formatted_response = response
|
113 |
|
114 |
+
# Add remaining queries info
|
115 |
+
remaining_queries = query_limiter.get_remaining_queries(user_id)
|
116 |
+
formatted_response += f"\n\n---\nRemaining queries this hour: {remaining_queries}/{query_limiter.max_queries}"
|
117 |
+
|
118 |
# Add question and response to history in the correct format (as tuples)
|
119 |
history.append((question, formatted_response))
|
120 |
|
rate_limiter.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from collections import defaultdict
|
3 |
+
import threading
|
4 |
+
|
5 |
+
class QueryRateLimiter:
|
6 |
+
def __init__(self, max_queries_per_hour: int = 10):
|
7 |
+
"""
|
8 |
+
Initialize rate limiter for queries per hour.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
max_queries_per_hour: Maximum number of queries allowed per hour
|
12 |
+
"""
|
13 |
+
self.max_queries = max_queries_per_hour
|
14 |
+
self.queries = defaultdict(list) # user_id -> list of timestamps
|
15 |
+
self.lock = threading.Lock()
|
16 |
+
|
17 |
+
def is_allowed(self, user_id: str) -> bool:
|
18 |
+
"""
|
19 |
+
Check if a user is allowed to make another query.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
user_id: Unique identifier for the user
|
23 |
+
|
24 |
+
Returns:
|
25 |
+
bool: True if query is allowed, False if rate limited
|
26 |
+
"""
|
27 |
+
current_time = time.time()
|
28 |
+
hour_ago = current_time - 3600 # 1 hour in seconds
|
29 |
+
|
30 |
+
with self.lock:
|
31 |
+
# Remove queries older than 1 hour
|
32 |
+
self.queries[user_id] = [t for t in self.queries[user_id] if t > hour_ago]
|
33 |
+
|
34 |
+
# Check if under rate limit
|
35 |
+
if len(self.queries[user_id]) < self.max_queries:
|
36 |
+
self.queries[user_id].append(current_time)
|
37 |
+
return True
|
38 |
+
|
39 |
+
return False
|
40 |
+
|
41 |
+
def get_remaining_queries(self, user_id: str) -> int:
|
42 |
+
"""
|
43 |
+
Get number of remaining queries for a user in the current hour.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
user_id: Unique identifier for the user
|
47 |
+
|
48 |
+
Returns:
|
49 |
+
int: Number of remaining queries
|
50 |
+
"""
|
51 |
+
current_time = time.time()
|
52 |
+
hour_ago = current_time - 3600
|
53 |
+
|
54 |
+
with self.lock:
|
55 |
+
# Remove queries older than 1 hour
|
56 |
+
self.queries[user_id] = [t for t in self.queries[user_id] if t > hour_ago]
|
57 |
+
|
58 |
+
return self.max_queries - len(self.queries[user_id])
|
59 |
+
|
60 |
+
def get_time_until_reset(self, user_id: str) -> float:
|
61 |
+
"""
|
62 |
+
Get time in seconds until the rate limit resets for a user.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
user_id: Unique identifier for the user
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
float: Seconds until rate limit reset
|
69 |
+
"""
|
70 |
+
current_time = time.time()
|
71 |
+
|
72 |
+
with self.lock:
|
73 |
+
if not self.queries[user_id]:
|
74 |
+
return 0.0
|
75 |
+
|
76 |
+
oldest_query = min(self.queries[user_id])
|
77 |
+
reset_time = oldest_query + 3600 # 1 hour in seconds
|
78 |
+
|
79 |
+
return max(0.0, reset_time - current_time)
|