Spaces:
Runtime error
Runtime error
1st Init Commit
Browse files- Dockerfile +59 -0
- doc_reader.py +53 -0
- main.py +232 -0
- model.py +83 -0
- requirements.txt +15 -0
- start_server.sh +22 -0
- streamlit_app.py +23 -0
Dockerfile
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an NVIDIA CUDA base image
|
2 |
+
ARG CUDA_IMAGE="12.1.1-devel-ubuntu22.04"
|
3 |
+
FROM nvidia/cuda:${CUDA_IMAGE}
|
4 |
+
|
5 |
+
ENV HOST 0.0.0.0
|
6 |
+
|
7 |
+
# Set the working directory in the container to /app
|
8 |
+
#WORKDIR /app
|
9 |
+
|
10 |
+
RUN mkdir -p /app/cache && chmod -R 777 /app/cache
|
11 |
+
|
12 |
+
ENV HF_HOME=/app/cache
|
13 |
+
|
14 |
+
# Install Python and pip
|
15 |
+
RUN apt-get update && apt-get upgrade -y \
|
16 |
+
&& apt-get install -y git build-essential \
|
17 |
+
python3 python3-pip gcc wget \
|
18 |
+
ocl-icd-opencl-dev opencl-headers clinfo \
|
19 |
+
libclblast-dev libopenblas-dev \
|
20 |
+
&& mkdir -p /etc/OpenCL/vendors && echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
|
21 |
+
|
22 |
+
ENV CUDA_DOCKER_ARCH=all
|
23 |
+
ENV LLAMA_CUBLAS=1
|
24 |
+
|
25 |
+
# Copy the current directory contents into the container at /app
|
26 |
+
COPY . /app
|
27 |
+
|
28 |
+
# Install required packages from requirements.txt
|
29 |
+
COPY ./requirements.txt /app/requirements.txt
|
30 |
+
RUN pip3 install --no-cache-dir -r /app/requirements.txt
|
31 |
+
|
32 |
+
# Expose the ports for FastAPI and Streamlit
|
33 |
+
EXPOSE 8000
|
34 |
+
EXPOSE 8501
|
35 |
+
|
36 |
+
RUN useradd -m -u 1000 user
|
37 |
+
# Switch to the "user" user
|
38 |
+
USER user
|
39 |
+
WORKDIR /home/user/app
|
40 |
+
# Set home to the user's home directory
|
41 |
+
ENV HOME=/home/user \
|
42 |
+
PATH=/home/user/.local/bin:$PATH \
|
43 |
+
PYTHONPATH=$HOME/app \
|
44 |
+
PYTHONUNBUFFERED=1 \
|
45 |
+
GRADIO_ALLOW_FLAGGING=never \
|
46 |
+
GRADIO_NUM_PORTS=1 \
|
47 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
48 |
+
GRADIO_THEME=huggingface \
|
49 |
+
SYSTEM=spaces
|
50 |
+
|
51 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
52 |
+
COPY --chown=user . /home/user/app
|
53 |
+
|
54 |
+
# Copy and give execute permissions to the start script
|
55 |
+
COPY start_server.sh /app/start_server.sh
|
56 |
+
RUN chmod +x /app/start_server.sh
|
57 |
+
|
58 |
+
# Run the start script
|
59 |
+
CMD ["/app/start_server.sh"]
|
doc_reader.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import Qdrant
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain_core.documents.base import Document
|
7 |
+
|
8 |
+
class DocReader:
|
9 |
+
def __init__(self, pdf_path, model_path="sentence-transformers/all-mpnet-base-v2", persist_directory="db"):
|
10 |
+
self.pdfs = glob.glob(f"{pdf_path}/*.pdf") # Adjusted to get all PDF files in the folder
|
11 |
+
self.model_path = model_path
|
12 |
+
self.persist_directory = persist_directory
|
13 |
+
|
14 |
+
def load_pdfs(self):
|
15 |
+
all_pages = []
|
16 |
+
for pdf_file in self.pdfs:
|
17 |
+
loader = PyPDFLoader(pdf_file)
|
18 |
+
pages = loader.load()
|
19 |
+
all_pages.extend(pages)
|
20 |
+
return all_pages
|
21 |
+
|
22 |
+
def convert_to_markdown(self, documents):
|
23 |
+
markdown_text = ""
|
24 |
+
for doc in documents:
|
25 |
+
|
26 |
+
page_text = doc.page_content.replace('\n', '\n\n') # Add extra newline for Markdown
|
27 |
+
markdown_text += page_text + "\n\n---\n\n"
|
28 |
+
return markdown_text
|
29 |
+
|
30 |
+
def split_text(self, pages):
|
31 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
32 |
+
chunk_size=128,
|
33 |
+
chunk_overlap=24)
|
34 |
+
documents = [Document(page_content=page) for page in pages]
|
35 |
+
split_documents = text_splitter.split_documents(documents)
|
36 |
+
texts = [doc.page_content for doc in split_documents]
|
37 |
+
|
38 |
+
return texts
|
39 |
+
|
40 |
+
def generate_embeddings(self, texts):
|
41 |
+
embeddings = HuggingFaceEmbeddings(
|
42 |
+
model_name=self.model_path,
|
43 |
+
model_kwargs={"device": "cuda:0"},
|
44 |
+
encode_kwargs={"normalize_embeddings": True},
|
45 |
+
)
|
46 |
+
documents = [Document(page_content=text) for text in texts]
|
47 |
+
|
48 |
+
db = Qdrant.from_documents(documents, embeddings, location=":memory:", collection_name="pdf_collection")
|
49 |
+
return db
|
50 |
+
|
51 |
+
def search_similar(self, input_text, k=3):
|
52 |
+
results = self.db.similarity_search(input_text, k)
|
53 |
+
return results
|
main.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# main.py
|
2 |
+
import logging
|
3 |
+
from fastapi import FastAPI, Request
|
4 |
+
from fastapi.middleware.cors import CORSMiddleware
|
5 |
+
import nest_asyncio
|
6 |
+
from pyngrok import ngrok
|
7 |
+
import uvicorn
|
8 |
+
import json
|
9 |
+
from model import Model
|
10 |
+
from doc_reader import DocReader
|
11 |
+
from transformers import GenerationConfig, pipeline
|
12 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
13 |
+
from langchain.prompts import PromptTemplate
|
14 |
+
from langchain.chains import RetrievalQA
|
15 |
+
from langchain.schema.runnable import RunnableBranch
|
16 |
+
from langchain_core.runnables import RunnableLambda
|
17 |
+
|
18 |
+
|
19 |
+
# Logger configuration
|
20 |
+
logging.basicConfig(level=logging.INFO,
|
21 |
+
format='%(asctime)s [%(levelname)s] %(message)s',
|
22 |
+
datefmt='%Y-%m-%d %H:%M:%S')
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
|
25 |
+
# Add path to sys
|
26 |
+
# sys.path.insert(0,'/opt/accelerate')
|
27 |
+
# sys.path.insert(0,'/opt/uvicorn')
|
28 |
+
# sys.path.insert(0,'/opt/pyngrok')
|
29 |
+
# sys.path.insert(0,'/opt/huggingface_hub')
|
30 |
+
# sys.path.insert(0,'/opt/nest_asyncio')
|
31 |
+
# sys.path.insert(0,'/opt/transformers')
|
32 |
+
# sys.path.insert(0,'/opt/pytorch')
|
33 |
+
|
34 |
+
# Initialize FastAPI app
|
35 |
+
app = FastAPI()
|
36 |
+
NGROK_TOKEN = "2aQUM6MDkhjcPEBbIFTiu4cZBBr_sMMei8h5yejFbxFeMFuQ" # Replace with your NGROK token
|
37 |
+
#MODEL_NAME = "/opt/Llama-2-13B-chat-GPTQ"
|
38 |
+
#MODEL_NAME = "MediaTek-Research/Breeze-7B-Instruct-64k-v0.1"
|
39 |
+
MODEL_NAME = "codellama/CodeLlama-7b-Instruct-hf"
|
40 |
+
PDF_PATH = "/opt/docs"
|
41 |
+
CLASSIFIER_MODEL_NAME = "roberta-large-mnli"
|
42 |
+
|
43 |
+
# Add CORS middleware
|
44 |
+
app.add_middleware(
|
45 |
+
CORSMiddleware,
|
46 |
+
allow_origins=['*'],
|
47 |
+
allow_credentials=True,
|
48 |
+
allow_methods=['*'],
|
49 |
+
allow_headers=['*'],
|
50 |
+
)
|
51 |
+
|
52 |
+
model_instance = Model(MODEL_NAME)
|
53 |
+
model_instance.load()
|
54 |
+
#model_instance.load(model_name_or_path = GGUF_HUGGINGFACE_REPO, model_basename = GGUF_HUGGINGFACE_BIN_FILE
|
55 |
+
|
56 |
+
# classifier_model = pipeline("zero-shot-classification",
|
57 |
+
# model=CLASSIFIER_MODEL_NAME)
|
58 |
+
|
59 |
+
|
60 |
+
@app.post("/predict")
|
61 |
+
async def predict_text(request: Request):
|
62 |
+
try:
|
63 |
+
# Parse request body as JSON
|
64 |
+
request_body = await request.json()
|
65 |
+
|
66 |
+
prompt = request_body.get("prompt", "")
|
67 |
+
# TODO: handle additional parameters like 'temperature' or 'max_tokens' if needed
|
68 |
+
result = general_chain.invoke({"question":prompt})
|
69 |
+
logger.info(f"Result: {result}")
|
70 |
+
formatted_response = {
|
71 |
+
"choices": [
|
72 |
+
{
|
73 |
+
"message": {
|
74 |
+
"content": result['result']
|
75 |
+
}
|
76 |
+
}
|
77 |
+
]
|
78 |
+
}
|
79 |
+
return formatted_response
|
80 |
+
except json.JSONDecodeError:
|
81 |
+
return {"error": "Invalid JSON format"}
|
82 |
+
|
83 |
+
def load_pdfs():
|
84 |
+
global db
|
85 |
+
doc_reader = DocReader(PDF_PATH)
|
86 |
+
# Load PDFs and convert to Markdown
|
87 |
+
pages = doc_reader.load_pdfs()
|
88 |
+
markdown_text = doc_reader.convert_to_markdown(pages)
|
89 |
+
texts = doc_reader.split_text([markdown_text]) # Assuming split_text now takes a list of Markdown texts
|
90 |
+
# Generate embeddings
|
91 |
+
db = doc_reader.generate_embeddings(texts)
|
92 |
+
|
93 |
+
# def classify_sequence(input_data):
|
94 |
+
# sequence_to_classify = input_data["question"]
|
95 |
+
# candidate_labels = ['LinuxCommand', 'TechnicalSupport', 'GeneralResponse']
|
96 |
+
# classification = classifier_model(sequence_to_classify, candidate_labels)
|
97 |
+
# # Extract the label with the highest score
|
98 |
+
# return {"topic": classification['labels'][0], "question": sequence_to_classify}
|
99 |
+
|
100 |
+
def format_output(output):
|
101 |
+
return {"result": output}
|
102 |
+
|
103 |
+
def setup_chain():
|
104 |
+
#global full_chain
|
105 |
+
#global classifier_chain
|
106 |
+
global command_chain
|
107 |
+
#global support_chain
|
108 |
+
global general_chain
|
109 |
+
generation_config = GenerationConfig.from_pretrained(MODEL_NAME)
|
110 |
+
generation_config.max_new_tokens = 1024
|
111 |
+
generation_config.temperature = 0.3
|
112 |
+
generation_config.top_p = 0.9
|
113 |
+
generation_config.do_sample = True
|
114 |
+
generation_config.repetition_penalty = 1.15
|
115 |
+
|
116 |
+
text_pipeline = pipeline(
|
117 |
+
"text-generation",
|
118 |
+
model=model_instance.model,
|
119 |
+
tokenizer=model_instance.tokenizer,
|
120 |
+
return_full_text=True,
|
121 |
+
generation_config=generation_config,
|
122 |
+
)
|
123 |
+
|
124 |
+
llm = HuggingFacePipeline(pipeline=text_pipeline)
|
125 |
+
|
126 |
+
# Classifier
|
127 |
+
#classifier_runnable = RunnableLambda(classify_sequence)
|
128 |
+
# Formatter
|
129 |
+
output_runnable = RunnableLambda(format_output)
|
130 |
+
|
131 |
+
# System Commands
|
132 |
+
command_template = """
|
133 |
+
[INST] <<SYS>>
|
134 |
+
As a Gemini Central engineer specializing in Linux, evaluate the user's input and choose the most likely command they want to execute from these options:
|
135 |
+
- 'systemctl stop sbox-admin'
|
136 |
+
- 'systemctl start sbox-admin'
|
137 |
+
- 'systemctl restart sbox-admin'
|
138 |
+
Respond with the chosen command. If uncertain, reply with 'No command will be executed'.
|
139 |
+
<</SYS>>
|
140 |
+
question:
|
141 |
+
{question}
|
142 |
+
answer:
|
143 |
+
[/INST]"""
|
144 |
+
command_chain = (PromptTemplate(template=command_template,input_variables=["question"]) | llm | output_runnable )
|
145 |
+
|
146 |
+
# Support
|
147 |
+
# support_template = """
|
148 |
+
# [INST] <<SYS>>
|
149 |
+
# Act as a Gemini support engineer who is good at reading technical data. Use the following information to answer the question at the end.
|
150 |
+
# <</SYS>>
|
151 |
+
# {context}
|
152 |
+
# {question}
|
153 |
+
# answer:
|
154 |
+
# [/INST]
|
155 |
+
# """
|
156 |
+
|
157 |
+
|
158 |
+
# General
|
159 |
+
general_template = """
|
160 |
+
[INST] <<SYS>>
|
161 |
+
You are an advanced AI assistant designed to provide assistance with a wide range of queries.
|
162 |
+
Users may request you to assume various roles or perform diverse tasks
|
163 |
+
<</SYS>>
|
164 |
+
question:
|
165 |
+
{question}
|
166 |
+
answer:
|
167 |
+
[/INST]"""
|
168 |
+
general_chain = (PromptTemplate(template=general_template,input_variables=["question"]) | llm | output_runnable)
|
169 |
+
|
170 |
+
#support_prompt = PromptTemplate(template=support_template, input_variables=["context","question"])
|
171 |
+
|
172 |
+
#support_chain = RetrievalQA.from_llm(llm=llm, retriever= db.as_retriever(), prompt=support_prompt, input_key="question", return_source_documents=True, verbose=True)
|
173 |
+
|
174 |
+
# support_chain = RetrievalQA.from_chain_type(
|
175 |
+
# llm=llm,
|
176 |
+
# chain_type="stuff",
|
177 |
+
# #retriever=db.as_retriever(search_kwargs={"k": 3}),
|
178 |
+
# retriever=db.as_retriever(),
|
179 |
+
# input_key="question",
|
180 |
+
# return_source_documents=True,
|
181 |
+
# chain_type_kwargs={"prompt": support_prompt},
|
182 |
+
# verbose=False
|
183 |
+
# )
|
184 |
+
# logger.info("support chain loaded successfully.")
|
185 |
+
|
186 |
+
# branch = RunnableBranch(
|
187 |
+
# (lambda x: x == "command", command_chain),
|
188 |
+
# (lambda x: x == "support", support_chain),
|
189 |
+
# general_chain, # Default chain
|
190 |
+
# )
|
191 |
+
|
192 |
+
# def route_classification(output):
|
193 |
+
# if output['topic'] == 'LinuxCommand':
|
194 |
+
# logger.info("Routing to command chain")
|
195 |
+
# return command_chain
|
196 |
+
# elif output['topic'] == 'TechnicalSupport':
|
197 |
+
# logger.info("Routing to support chain")
|
198 |
+
# return support_chain
|
199 |
+
# else:
|
200 |
+
# logger.info("Routing to general chain")
|
201 |
+
# return general_chain
|
202 |
+
|
203 |
+
# routing_runnable = RunnableLambda(route_classification)
|
204 |
+
|
205 |
+
# Full chain integration
|
206 |
+
#full_chain = classifier_runnable | routing_runnable
|
207 |
+
|
208 |
+
#logger.info("Full chain loaded successfully.")
|
209 |
+
return general_chain
|
210 |
+
|
211 |
+
|
212 |
+
###############
|
213 |
+
# launch once at startup
|
214 |
+
#load_pdfs()
|
215 |
+
setup_chain()
|
216 |
+
###############
|
217 |
+
|
218 |
+
if __name__ == "__main__":
|
219 |
+
|
220 |
+
if NGROK_TOKEN is not None:
|
221 |
+
ngrok.set_auth_token(NGROK_TOKEN)
|
222 |
+
|
223 |
+
ngrok_tunnel = ngrok.connect(8000)
|
224 |
+
public_url = ngrok_tunnel.public_url
|
225 |
+
|
226 |
+
print('Public URL:', public_url)
|
227 |
+
print("You can use {}/predict to get the assistant result.".format(public_url))
|
228 |
+
logger.info("You can use {}/predict to get the assistant result.".format(public_url))
|
229 |
+
|
230 |
+
nest_asyncio.apply()
|
231 |
+
uvicorn.run(app, port=8000)
|
232 |
+
|
model.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model.py
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
5 |
+
|
6 |
+
# Logger configuration
|
7 |
+
logging.basicConfig(level=logging.INFO,
|
8 |
+
format='%(asctime)s [%(levelname)s] %(message)s',
|
9 |
+
datefmt='%Y-%m-%d %H:%M:%S')
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
#model_path = "/opt/Llama-2-13B-chat-GPTQ"
|
13 |
+
|
14 |
+
class Model:
|
15 |
+
def __init__(self, model_path):
|
16 |
+
self.model_name = model_path
|
17 |
+
self.model = None
|
18 |
+
self.tokenizer = None
|
19 |
+
self.loaded = False
|
20 |
+
|
21 |
+
def load(self, precision='fp16'):
|
22 |
+
try:
|
23 |
+
# Check if CUDA is available
|
24 |
+
if not torch.cuda.is_available():
|
25 |
+
raise EnvironmentError("CUDA not available.")
|
26 |
+
# Set precision settings
|
27 |
+
if precision == 'fp16':
|
28 |
+
torch_dtype = torch.float16
|
29 |
+
else:
|
30 |
+
torch_dtype = torch.float32
|
31 |
+
|
32 |
+
# Initialize tokenizer
|
33 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
34 |
+
|
35 |
+
# Set up model configuration
|
36 |
+
config = AutoConfig.from_pretrained(self.model_name)
|
37 |
+
|
38 |
+
#config.quantization_config["disable_exllama"] = False
|
39 |
+
#config.quantization_config["use_exllama"] = True
|
40 |
+
#config.quantization_config["exllama_config"] = {"version": 2}
|
41 |
+
|
42 |
+
# Load model with configuration and precision
|
43 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
self.model_name,
|
45 |
+
config=config,
|
46 |
+
device_map="cuda:0", # Set to GPU 0
|
47 |
+
torch_dtype=torch_dtype
|
48 |
+
)
|
49 |
+
|
50 |
+
self.loaded = True
|
51 |
+
logger.info(f"Model loaded successfully on GPU with {precision} precision.")
|
52 |
+
except Exception as e:
|
53 |
+
logger.error(f"Error loading model: {e}")
|
54 |
+
|
55 |
+
def predict(self, input_text, max_length=50):
|
56 |
+
if not self.loaded:
|
57 |
+
logger.error("Model not loaded. Please load the model before prediction.")
|
58 |
+
return None
|
59 |
+
|
60 |
+
logger.info("========== Start Prediction ==========")
|
61 |
+
try:
|
62 |
+
# Ensure the input_text is a string
|
63 |
+
if not isinstance(input_text, str):
|
64 |
+
raise ValueError("Input text must be a string.")
|
65 |
+
|
66 |
+
# Encoding the input text
|
67 |
+
input_ids = self.tokenizer.encode(input_text, return_tensors='pt')
|
68 |
+
|
69 |
+
# Move input to the same device as model
|
70 |
+
input_ids = input_ids.to(next(self.model.parameters()).device)
|
71 |
+
|
72 |
+
# Generating output using the model
|
73 |
+
outputs = self.model.generate(input_ids, max_length=max_length)
|
74 |
+
|
75 |
+
# Decoding and returning the generated text
|
76 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
logger.info("Response: {}".format(response))
|
78 |
+
except Exception as e:
|
79 |
+
logger.error(f"Error during prediction: {e}")
|
80 |
+
response = None
|
81 |
+
|
82 |
+
logger.info("========== End Prediction ==========")
|
83 |
+
return response
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
nest-asyncio
|
3 |
+
pyngrok
|
4 |
+
uvicorn
|
5 |
+
accelerate
|
6 |
+
transformers
|
7 |
+
sentence-transformers
|
8 |
+
torch
|
9 |
+
auto-gptq
|
10 |
+
optimum
|
11 |
+
huggingface_hub
|
12 |
+
langchain
|
13 |
+
pypdf
|
14 |
+
qdrant-client
|
15 |
+
streamlit
|
start_server.sh
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# Start FastAPI app
|
4 |
+
echo "Starting FastAPI app..."
|
5 |
+
#uvicorn main:app --reload &
|
6 |
+
python3 main.py &
|
7 |
+
# Store FastAPI process ID
|
8 |
+
FASTAPI_PID=$!
|
9 |
+
|
10 |
+
# Start Streamlit app
|
11 |
+
echo "Starting Streamlit app..."
|
12 |
+
streamlit run streamlit_app.py &
|
13 |
+
|
14 |
+
# Store Streamlit process ID
|
15 |
+
STREAMLIT_PID=$!
|
16 |
+
|
17 |
+
# Wait for any process to exit
|
18 |
+
wait -n
|
19 |
+
|
20 |
+
# Kill the other process when one exits
|
21 |
+
kill -TERM $FASTAPI_PID
|
22 |
+
kill -TERM $STREAMLIT_PID
|
streamlit_app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
|
4 |
+
# Run this with: streamlit run streamlit_app.py
|
5 |
+
# Streamlit interface
|
6 |
+
st.title("Gemini Central Console Bot")
|
7 |
+
user_input = st.text_input("Enter your text here")
|
8 |
+
url = "http://localhost:8000/predict" # URL of your FastAPI predict endpoint
|
9 |
+
|
10 |
+
if st.button("Submit"):
|
11 |
+
# Prepare the payload
|
12 |
+
payload = {"prompt": user_input}
|
13 |
+
|
14 |
+
# Send the request to FastAPI endpoint
|
15 |
+
response = requests.post(url, json=payload)
|
16 |
+
|
17 |
+
# Display the response
|
18 |
+
if response.status_code == 200:
|
19 |
+
result = response.json()
|
20 |
+
content = result["choices"][0]["message"]["content"]
|
21 |
+
st.write(content)
|
22 |
+
else:
|
23 |
+
st.write("Failed to get response")
|