# Use an NVIDIA CUDA base image ARG CUDA_IMAGE="12.1.1-cudnn8-devel-ubuntu22.04" FROM nvidia/cuda:${CUDA_IMAGE} ENV HOST 0.0.0.0 # Set the working directory in the container to /app #WORKDIR /app RUN mkdir -p /app/cache && chmod -R 777 /app/cache ENV HF_HOME=/app/cache # Install Python and pip RUN apt-get update && apt-get install --no-install-recommends -y \ build-essential \ python3.9 \ python3-pip \ git \ ffmpeg \ && apt-get clean && rm -rf /var/lib/apt/lists/* # Copy the current directory contents into the container at /app COPY . /app # Install required packages from requirements.txt COPY ./requirements.txt /app/requirements.txt RUN pip3 install --no-cache-dir -r /app/requirements.txt # Expose the ports for FastAPI and Streamlit EXPOSE 8000 EXPOSE 8501 # Copy and give execute permissions to the start script COPY start_server.sh /app/start_server.sh RUN chmod +x /app/start_server.sh RUN useradd -m -u 1000 user # Switch to the "user" user USER user WORKDIR /home/user/app # Set home to the user's home directory ENV HOME=/home/user \ PATH=/home/user/.local/bin:$PATH \ PYTHONPATH=$HOME/app \ PYTHONUNBUFFERED=1 \ GRADIO_ALLOW_FLAGGING=never \ GRADIO_NUM_PORTS=1 \ GRADIO_SERVER_NAME=0.0.0.0 \ GRADIO_THEME=huggingface \ SYSTEM=spaces # Copy the current directory contents into the container at $HOME/app setting the owner to the user COPY --chown=user . /home/user/app # Run the start script #CMD ["/app/start_server.sh"] CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]