import streamlit as st from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelWithLMHead import torch # Load the tokenizer and model for classification tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news") model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news") tokenizer_bb = AutoTokenizer.from_pretrained("Lauraayu/News_Classification_Model") model_bb = AutoModelForSequenceClassification.from_pretrained("Lauraayu/News_Classification_Model") # Streamlit application title st.title("News Article Classifier") st.write("Enter a news article text to get its category.") # Text input for user to enter the news article text article = st.text_area("News Article", height=300) def summarize(text, max_length=150): input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True) generated_ids = model.generate(input_ids=input_ids, num_beams=2, max_length=max_length, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] return preds[0] # Perform summarization and classification when the user clicks the "Classify" button if st.button("Classify"): # Perform text summarization with st.spinner("Generating category..."): summary = summarize(article) # Tokenize the summarized text inputs = tokenizer_bb(summary, return_tensors="pt", truncation=True, padding=True, max_length=512) # Perform text classification with torch.no_grad(): outputs = model_bb(**inputs) # Get the predicted label predicted_label_id = torch.argmax(outputs.logits, dim=-1).item() label_mapping = model_bb.config.id2label predicted_label = label_mapping[predicted_label_id] # Display the classification result st.write("Summary:", summary) st.write("Category:", predicted_label)