foto_filter / app.py
Lavimelis's picture
Create app.py
560fb2f verified
raw
history blame
4.08 kB
import cv2
import numpy as np
import gradio as gr
# Farklı filtre fonksiyonları
def apply_gaussian_blur(frame):
return cv2.GaussianBlur(frame, (15, 15), 0)
def apply_sharpening_filter(frame):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
return cv2.filter2D(frame, -1, kernel)
def apply_edge_detection(frame):
return cv2.Canny(frame, 100, 200)
def apply_invert_filter(frame):
return cv2.bitwise_not(frame)
def adjust_brightness_contrast(frame, alpha=1.0, beta=50):
return cv2.convertScaleAbs(frame, alpha=alpha, beta=beta)
def apply_grayscale_filter(frame):
return cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
def apply_sepia_filter(frame):
sepia_filter = np.array([[0.272, 0.534, 0.131],
[0.349, 0.686, 0.168],
[0.393, 0.769, 0.189]])
return cv2.transform(frame, sepia_filter)
def apply_fall_filter(frame):
fall_filter = np.array([[0.393, 0.769, 0.189],
[0.349, 0.686, 0.168],
[0.272, 0.534, 0.131]])
return cv2.transform(frame, fall_filter)
def apply_emboss_filter(frame):
kernel = np.array([[ -2, -1, 0],
[ -1, 1, 1],
[ 0, 1, 2]])
return cv2.filter2D(frame, -1, kernel)
def apply_cartoon_filter(frame):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 9, 9)
color = cv2.bilateralFilter(frame, 9, 300, 300)
return cv2.bitwise_and(color, color, mask=edges)
def apply_threshold(frame, thresh_value=127):
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, thresh_value, 255, cv2.THRESH_BINARY)
return thresh
def apply_blurred_edges(frame):
blurred = cv2.GaussianBlur(frame, (21, 21), 0)
edges = cv2.Canny(frame, 100, 200)
return cv2.bitwise_and(blurred, blurred, mask=edges)
# Filtre uygulama fonksiyonu
def apply_filter(filter_type, input_image):
if input_image is None:
return "Resim yüklenmedi"
frame = input_image
if filter_type == "Gaussian Blur":
return apply_gaussian_blur(frame)
elif filter_type == "Sharpen":
return apply_sharpening_filter(frame)
elif filter_type == "Edge Detection":
return apply_edge_detection(frame)
elif filter_type == "Invert":
return apply_invert_filter(frame)
elif filter_type == "Brightness":
return adjust_brightness_contrast(frame, alpha=1.0, beta=50)
elif filter_type == "Grayscale":
return apply_grayscale_filter(frame)
elif filter_type == "Sepia":
return apply_sepia_filter(frame)
elif filter_type == "Sonbahar":
return apply_fall_filter(frame)
elif filter_type == "Emboss":
return apply_emboss_filter(frame)
elif filter_type == "Cartoon":
return apply_cartoon_filter(frame)
elif filter_type == "Threshold":
return apply_threshold(frame)
elif filter_type == "Blurred Edges":
return apply_blurred_edges(frame)
# Gradio arayüzü
with gr.Blocks() as demo:
gr.Markdown("# Web Kameradan Canlı Filtreleme")
# Filtre seçenekleri
filter_type = gr.Dropdown(
label="Filtre Seçin",
choices=["Gaussian Blur", "Sharpen", "Edge Detection", "Invert", "Brightness",
"Grayscale", "Sepia", "Sonbahar", "Emboss", "Cartoon", "Threshold", "Blurred Edges"],
value="Gaussian Blur"
)
# Görüntü yükleme alanı
input_image = gr.Image(label="Resim Yükle", type="numpy")
# Çıktı için görüntü
output_image = gr.Image(label="Filtre Uygulandı")
# Filtre uygula butonu
apply_button = gr.Button("Filtreyi Uygula")
# Butona tıklanınca filtre uygulama fonksiyonu
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
# Gradio arayüzünü başlat
demo.launch()