File size: 5,410 Bytes
8a8ccdb
 
47a6c20
8a8ccdb
 
 
2ef1af8
8a8ccdb
 
47a6c20
 
 
8a8ccdb
 
 
 
 
 
 
 
2ef1af8
 
8a8ccdb
 
 
2ef1af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8ccdb
 
 
47a6c20
8a8ccdb
5596de2
8a8ccdb
 
47a6c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a8ccdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a6c20
 
 
 
 
 
2ef1af8
47a6c20
2ef1af8
 
47a6c20
 
 
 
 
 
2ef1af8
 
 
 
 
 
 
 
 
 
 
 
47a6c20
 
2ef1af8
 
 
 
 
 
47a6c20
2ef1af8
 
 
 
 
 
 
 
47a6c20
 
 
8a8ccdb
 
47a6c20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import gradio as gr
from functools import partial
from transformers import pipeline, pipelines
from sentence_transformers import SentenceTransformer, util
from scipy.special import softmax
import os
import json


######################
##### INFERENCE ######
######################
class SentenceSimilarity:

    def __init__(self, model: str):
        self.model = SentenceTransformer(model)

    def __call__(self, query: str, corpus: list[str]):
        query_embedding = self.model.encode(query)
        corpus_embeddings = self.model.encode(corpus)
        output = util.semantic_search(query_embedding, corpus_embeddings, top_k=5)
        return output[0]


# Sentence Similarity
def sentence_similarity(
    query: str,
    texts: list[str],
    titles: list[str],
    urls: list[str],
    pipe: SentenceSimilarity,
):
    answer = pipe(query=query, corpus=texts)
    df = [
        [
            f"<a href='{urls[ans['corpus_id']]} target='_blank'>{titles[ans['corpus_id']]}</a>"
        ]
        for ans in answer
    ]
    return df


# Text Analysis
def cls_inference(input: list[str], pipe: pipeline) -> dict:
    results = pipe(input, top_k=None)
    return {x["label"]: x["score"] for x in results}


# POSP
def tagging(text: str, pipe: pipeline):
    output = pipe(text)
    return {"text": text, "entities": output}


# Text Analysis
def text_analysis(text, pipes: list[pipeline]):
    outputs = []
    for pipe in pipes:
        if isinstance(pipe, pipelines.token_classification.TokenClassificationPipeline):
            outputs.append(tagging(text, pipe))
        else:
            outputs.append(cls_inference(text, pipe))
    return outputs


######################
##### INTERFACE ######
######################
def text_interface(
    pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
):
    return gr.Interface(
        fn=partial(cls_inference, pipe=pipe),
        inputs=[
            gr.Textbox(lines=5, label="Input Text"),
        ],
        title=title,
        description=desc,
        outputs=[gr.Label(label=output_label)],
        examples=examples,
        allow_flagging="never",
    )


def search_interface(
    pipe: SentenceSimilarity,
    examples: list[str],
    output_label: str,
    title: str,
    desc: str,
    sample: str,
):
    f = open(sample)
    data = json.load(f)
    with gr.Blocks() as sentence_similarity_interface:
        gr.Markdown(title)
        gr.Markdown(desc)
        with gr.Row():
            with gr.Column():
                input_text = gr.Textbox(lines=5, label="Query")
                df = gr.DataFrame(
                    [
                        [id, f"<a href='{url}' target='_blank'>{title}</a>"]
                        for id, title, url in zip(
                            data["id"], data["title"], data["url"]
                        )
                    ],
                    headers=["ID", "Title"],
                    wrap=True,
                    datatype=["markdown", "html"],
                    interactive=False,
                    height=300,
                )
                button = gr.Button("Search...")
            output = gr.DataFrame(
                headers=["Title"],
                wrap=True,
                datatype=["html"],
                interactive=False,
            )
        button.click(
            fn=partial(
                sentence_similarity,
                pipe=pipe,
                texts=data["text"],
                titles=data["title"],
                urls=data["url"],
            ),
            inputs=[input_text],
            outputs=[output],
        )
    return sentence_similarity_interface


def token_classification_interface(
    pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
):
    return gr.Interface(
        fn=partial(tagging, pipe=pipe),
        inputs=[
            gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"),
        ],
        outputs=[gr.HighlightedText(label=output_label)],
        title=title,
        examples=examples,
        description=desc,
        allow_flagging="never",
    )


def text_analysis_interface(
    pipe: list, examples: list[str], output_label: str, title: str, desc: str
):
    with gr.Blocks() as text_analysis_interface:
        gr.Markdown(title)
        gr.Markdown(desc)
        input_text = gr.Textbox(lines=5, label="Input Text")
        with gr.Row():
            outputs = [
                (
                    gr.HighlightedText(label=label)
                    if isinstance(
                        p, pipelines.token_classification.TokenClassificationPipeline
                    )
                    else gr.Label(label=label)
                )
                for label, p in zip(output_label, pipe)
            ]
        btn = gr.Button("Analyze")
        btn.click(
            fn=partial(text_analysis, pipes=pipe),
            inputs=[input_text],
            outputs=outputs,
        )
        gr.Examples(
            examples=examples,
            inputs=input_text,
            outputs=outputs,
        )
    return text_analysis_interface


# Summary
# summary_interface = gr.Interface.from_pipeline(
#     pipes["summarization"],
#     title="Summarization",
#     examples=details["summarization"]["examples"],
#     description=details["summarization"]["description"],
#     allow_flagging="never",
# )