Spaces:
Runtime error
Runtime error
File size: 4,775 Bytes
8a8ccdb 47a6c20 8a8ccdb 47a6c20 8a8ccdb 47a6c20 8a8ccdb 5596de2 8a8ccdb 47a6c20 8a8ccdb 47a6c20 8a8ccdb 47a6c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
from functools import partial
from transformers import pipeline, pipelines
from sentence_transformers import SentenceTransformer, util
from scipy.special import softmax
import os
######################
##### INFERENCE ######
######################
class SentenceSimilarity:
def __init__(self, model: str):
self.model = SentenceTransformer(model)
def __call__(self, query: str, corpus: list[str]):
query_embedding = self.model.encode(query)
corpus_embeddings = self.model.encode(corpus)
output = util.semantic_search(query_embedding, corpus_embeddings)
sorted_output = sorted(output[0], key=lambda x: x["corpus_id"])
probabilities = softmax([x["score"] for x in sorted_output])
return probabilities
# Sentence Similarity
def sentence_similarity(text: str, documents: list[str], pipe: SentenceSimilarity):
doc_texts = []
for doc in documents:
f = open(doc, "r")
doc_texts.append(f.read())
answer = pipe(query=text, corpus=doc_texts)
return {os.path.basename(doc): prob for doc, prob in zip(documents, answer)}
# Text Analysis
def cls_inference(input: list[str], pipe: pipeline) -> dict:
results = pipe(input, top_k=None)
return {x["label"]: x["score"] for x in results}
# POSP
def tagging(text: str, pipe: pipeline):
output = pipe(text)
return {"text": text, "entities": output}
# Text Analysis
def text_analysis(text, pipes: list[pipeline]):
outputs = []
for pipe in pipes:
if isinstance(pipe, pipelines.token_classification.TokenClassificationPipeline):
outputs.append(tagging(text, pipe))
else:
outputs.append(cls_inference(text, pipe))
return outputs
######################
##### INTERFACE ######
######################
def text_interface(
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
):
return gr.Interface(
fn=partial(cls_inference, pipe=pipe),
inputs=[
gr.Textbox(lines=5, label="Input Text"),
],
title=title,
description=desc,
outputs=[gr.Label(label=output_label)],
examples=examples,
allow_flagging="never",
)
def search_interface(
pipe: SentenceSimilarity,
examples: list[str],
output_label: str,
title: str,
desc: str,
):
with gr.Blocks() as sentence_similarity_interface:
gr.Markdown(title)
gr.Markdown(desc)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(lines=5, label="Query")
file_input = gr.File(
label="Documents", file_types=[".txt"], file_count="multiple"
)
button = gr.Button("Search...")
output = gr.Label(output_label)
button.click(
fn=partial(sentence_similarity, pipe=pipe),
inputs=[input_text, file_input],
outputs=[output],
)
return sentence_similarity_interface
def token_classification_interface(
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
):
return gr.Interface(
fn=partial(tagging, pipe=pipe),
inputs=[
gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"),
],
outputs=[gr.HighlightedText(label=output_label)],
title=title,
examples=examples,
description=desc,
allow_flagging="never",
)
def text_analysis_interface(
pipe: list, examples: list[str], output_label: str, title: str, desc: str
):
with gr.Blocks() as text_analysis_interface:
gr.Markdown(title)
gr.Markdown(desc)
input_text = gr.Textbox(lines=5, label="Input Text")
with gr.Row():
outputs = [
(
gr.HighlightedText(label=label)
if isinstance(
p, pipelines.token_classification.TokenClassificationPipeline
)
else gr.Label(label=label)
)
for label, p in zip(output_label, pipe)
]
btn = gr.Button("Analyze")
btn.click(
fn=partial(text_analysis, pipes=pipe),
inputs=[input_text],
outputs=outputs,
)
gr.Examples(
examples=examples,
inputs=input_text,
outputs=outputs,
)
return text_analysis_interface
# Summary
# summary_interface = gr.Interface.from_pipeline(
# pipes["summarization"],
# title="Summarization",
# examples=details["summarization"]["examples"],
# description=details["summarization"]["description"],
# allow_flagging="never",
# )
|