Spaces:
Runtime error
Runtime error
File size: 6,049 Bytes
8a8ccdb 47a6c20 8a8ccdb 2ef1af8 8a8ccdb 47a6c20 8a8ccdb 860f760 8a8ccdb 860f760 8a8ccdb 860f760 8a8ccdb 860f760 2ef1af8 8a8ccdb 2ef1af8 860f760 2ef1af8 860f760 8a8ccdb 47a6c20 8a8ccdb 5596de2 8a8ccdb 47a6c20 8a8ccdb 47a6c20 860f760 47a6c20 860f760 47a6c20 860f760 2ef1af8 860f760 2ef1af8 47a6c20 860f760 47a6c20 2ef1af8 860f760 2ef1af8 860f760 47a6c20 8a8ccdb 47a6c20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import gradio as gr
from functools import partial
from transformers import pipeline, pipelines
from sentence_transformers import SentenceTransformer, util
import json
######################
##### INFERENCE ######
######################
class SentenceSimilarity:
def __init__(self, model: str, corpus_path: str):
f = open(corpus_path)
data = json.load(f)
self.id, self.url, self.title, self.text = (
data["id"],
data["url"],
data["title"],
data["text"],
)
self.model = SentenceTransformer(model)
self.corpus_embeddings = self.model.encode(self.text)
def __call__(self, query: str, corpus: list[str], top_k: int = 5):
query_embedding = self.model.encode(query)
output = util.semantic_search(
query_embedding, self.corpus_embeddings, top_k=top_k
)
return output[0]
# Sentence Similarity
def sentence_similarity(
query: str,
texts: list[str],
titles: list[str],
urls: list[str],
pipe: SentenceSimilarity,
top_k: int,
) -> list[str]:
answer = pipe(query=query, corpus=texts, top_k=top_k)
output = [
f"""
Cosine Similarity Score: {round(ans['score'], 3)}
## [{titles[ans['corpus_id']]} 🔗]({urls[ans['corpus_id']]})
{texts[ans['corpus_id']]}
"""
for ans in answer
]
return output
# Text Analysis
def cls_inference(input: list[str], pipe: pipeline) -> dict:
results = pipe(input, top_k=None)
return {x["label"]: x["score"] for x in results}
# POSP
def tagging(text: str, pipe: pipeline):
output = pipe(text)
return {"text": text, "entities": output}
# Text Analysis
def text_analysis(text, pipes: list[pipeline]):
outputs = []
for pipe in pipes:
if isinstance(pipe, pipelines.token_classification.TokenClassificationPipeline):
outputs.append(tagging(text, pipe))
else:
outputs.append(cls_inference(text, pipe))
return outputs
######################
##### INTERFACE ######
######################
def text_interface(
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
):
return gr.Interface(
fn=partial(cls_inference, pipe=pipe),
inputs=[
gr.Textbox(lines=5, label="Input Text"),
],
title=title,
description=desc,
outputs=[gr.Label(label=output_label)],
examples=examples,
allow_flagging="never",
)
def search_interface(
pipe: SentenceSimilarity,
examples: list[str],
output_label: str,
title: str,
desc: str,
top_k: int,
):
with gr.Blocks() as sentence_similarity_interface:
gr.Markdown(title)
gr.Markdown(desc)
with gr.Row():
# input on the left
with gr.Column():
input_text = gr.Textbox(lines=5, label="Query")
# display documents
df = gr.DataFrame(
[
[id, f"<a href='{url}' target='_blank'>{title} 🔗</a>"]
for id, title, url in zip(pipe.id, pipe.title, pipe.url)
],
headers=["ID", "Title"],
wrap=True,
datatype=["markdown", "html"],
interactive=False,
height=300,
)
button = gr.Button("Search...")
with gr.Column():
# outputs top_k results in accordion format
outputs = []
for i in range(top_k):
# open the first accordion
with gr.Accordion(label=f"Document {i + 1}", open=i == 0) as a:
output = gr.Markdown()
outputs.append(output)
gr.Examples(examples, inputs=[input_text], outputs=outputs)
button.click(
fn=partial(
sentence_similarity,
pipe=pipe,
texts=pipe.text,
titles=pipe.title,
urls=pipe.url,
top_k=top_k,
),
inputs=[input_text],
outputs=outputs,
)
return sentence_similarity_interface
def token_classification_interface(
pipe: pipeline, examples: list[str], output_label: str, title: str, desc: str
):
return gr.Interface(
fn=partial(tagging, pipe=pipe),
inputs=[
gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"),
],
outputs=[gr.HighlightedText(label=output_label)],
title=title,
examples=examples,
description=desc,
allow_flagging="never",
)
def text_analysis_interface(
pipe: list, examples: list[str], output_label: str, title: str, desc: str
):
with gr.Blocks() as text_analysis_interface:
gr.Markdown(title)
gr.Markdown(desc)
input_text = gr.Textbox(lines=5, label="Input Text")
with gr.Row():
outputs = [
(
gr.HighlightedText(label=label)
if isinstance(
p, pipelines.token_classification.TokenClassificationPipeline
)
else gr.Label(label=label)
)
for label, p in zip(output_label, pipe)
]
btn = gr.Button("Analyze")
btn.click(
fn=partial(text_analysis, pipes=pipe),
inputs=[input_text],
outputs=outputs,
)
gr.Examples(
examples=examples,
inputs=input_text,
outputs=outputs,
)
return text_analysis_interface
# Summary
# summary_interface = gr.Interface.from_pipeline(
# pipes["summarization"],
# title="Summarization",
# examples=details["summarization"]["examples"],
# description=details["summarization"]["description"],
# allow_flagging="never",
# )
|