Spaces:
Runtime error
Runtime error
from utils import ( | |
SentenceSimilarity, | |
pos_tagging, | |
text_analysis, | |
text_interface, | |
sentence_similarity, | |
) | |
from script import details | |
from transformers import pipeline | |
import gradio as gr | |
from functools import partial | |
pipes = { | |
"Sentiment Analysis": pipeline( | |
"text-classification", | |
model="StevenLimcorn/indonesian-roberta-base-emotion-classifier", | |
tokenizer="StevenLimcorn/indonesian-roberta-base-emotion-classifier", | |
), | |
"Emotion Classifier": pipeline( | |
"text-classification", | |
model="w11wo/indonesian-roberta-base-sentiment-classifier", | |
tokenizer="w11wo/indonesian-roberta-base-sentiment-classifier", | |
), | |
"summarization": pipeline( | |
"summarization", | |
model="LazarusNLP/IndoNanoT5-base-IndoSum", | |
tokenizer="LazarusNLP/IndoNanoT5-base-IndoSum", | |
), | |
"sentence-similarity": SentenceSimilarity(model="LazarusNLP/all-indobert-base-v2"), | |
"POS Tagging": pipeline(model="w11wo/indonesian-roberta-base-posp-tagger"), | |
} | |
if __name__ == "__main__": | |
# list of collections of all demos | |
classifiers = ["Sentiment Analysis", "Emotion Classifier"] | |
# Summary | |
summary_interface = gr.Interface.from_pipeline( | |
pipes["summarization"], | |
title="Summarization", | |
examples=details["summarization"]["examples"], | |
description=details["summarization"]["description"], | |
allow_flagging="never", | |
) | |
# Pos Tagging | |
pos_interface = gr.Interface( | |
fn=partial(pos_tagging, pipe=pipes["POS Tagging"]), | |
inputs=[ | |
gr.Textbox(placeholder="Masukan kalimat di sini...", label="Input Text"), | |
], | |
outputs=[gr.HighlightedText()], | |
title="POS Tagging", | |
examples=details["POS Tagging"]["examples"], | |
description=details["POS Tagging"]["description"], | |
allow_flagging="never", | |
) | |
# Text Analysis | |
with gr.Blocks() as text_analysis_interface: | |
gr.Markdown("# Text Analysis") | |
gr.Markdown(details["Text Analysis"]["description"]) | |
input_text = gr.Textbox(lines=5, label="Input Text") | |
with gr.Row(): | |
smsa = gr.Label(label="Sentiment Analysis") | |
emot = gr.Label(label="Emotion Classification") | |
pos = gr.HighlightedText(label="POS Tagging") | |
btn = gr.Button("Analyze") | |
btn.click( | |
fn=partial(text_analysis, pipes=pipes), | |
inputs=[input_text], | |
outputs=[smsa, emot, pos], | |
) | |
gr.Examples( | |
details["Text Analysis"]["examples"], | |
inputs=input_text, | |
outputs=[smsa, emot, pos], | |
) | |
with gr.Blocks() as sentence_similarity_interface: | |
gr.Markdown("# Document Search 🔍") | |
gr.Markdown(details["sentence-similarity"]["description"]) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox(lines=5, label="Query") | |
file_input = gr.File( | |
label="Documents", file_types=[".txt"], file_count="multiple" | |
) | |
button = gr.Button("Search...") | |
output = gr.Label() | |
button.click( | |
fn=partial(sentence_similarity, pipe=pipes["sentence-similarity"]), | |
inputs=[input_text, file_input], | |
outputs=[output], | |
) | |
demo_interface = { | |
"demo": [ | |
text_interface( | |
pipes[name], | |
details[name]["examples"], | |
name, | |
name, | |
details[name]["description"], | |
) | |
for name in classifiers | |
] | |
+ [ | |
sentence_similarity_interface, | |
summary_interface, | |
pos_interface, | |
text_analysis_interface, | |
], | |
"titles": classifiers | |
+ ["Document Search", "Summarization", "POS Tagging", "Text Analysis"], | |
} | |
# with gr.Blocks() as demo: | |
# with gr.Column(): | |
# gr.Markdown("# Title") | |
# gr.TabbedInterface( | |
# demo_interface["demo"], demo_interface["titles"], theme="soft" | |
# ) | |
demo = gr.TabbedInterface( | |
demo_interface["demo"], demo_interface["titles"], theme="soft" | |
) | |
demo.launch(debug=True) | |