Use docarray.index.InMemoryExactNNIndex instead of DocList as index
Browse files
app.py
CHANGED
@@ -4,25 +4,34 @@ from typing import List, Optional
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
-
from docarray import BaseDoc
|
8 |
from docarray.typing import TorchTensor
|
9 |
-
from docarray.
|
10 |
from transformers import pipeline
|
11 |
|
12 |
-
|
13 |
|
14 |
|
15 |
@st.cache_resource(show_spinner="Loading dataset...")
|
16 |
def load_index():
|
17 |
class RepoDoc(BaseDoc):
|
18 |
name: str
|
19 |
-
topics: list #
|
20 |
stars: int
|
21 |
license: str
|
22 |
code_embedding: Optional[TorchTensor[768]]
|
23 |
doc_embedding: Optional[TorchTensor[768]]
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
@st.cache_resource(show_spinner="Loading RepoSim pipeline...")
|
@@ -31,7 +40,6 @@ def load_model():
|
|
31 |
model="Lazyhope/RepoSim",
|
32 |
trust_remote_code=True,
|
33 |
device_map="auto",
|
34 |
-
use_auth_token=st.secrets.hf_token, # TODO: delete this line when the pipeline is public
|
35 |
)
|
36 |
|
37 |
|
@@ -52,8 +60,8 @@ def run_model(_model, repo_name, github_token):
|
|
52 |
|
53 |
|
54 |
def run_search(index, query, search_field, limit):
|
55 |
-
top_matches, scores = find(
|
56 |
-
|
57 |
)
|
58 |
|
59 |
search_results = top_matches.to_dataframe()
|
@@ -62,7 +70,7 @@ def run_search(index, query, search_field, limit):
|
|
62 |
return search_results
|
63 |
|
64 |
|
65 |
-
index = load_index()
|
66 |
model = load_model()
|
67 |
|
68 |
with st.sidebar:
|
@@ -81,12 +89,14 @@ with st.sidebar:
|
|
81 |
value=10,
|
82 |
step=1,
|
83 |
key="search_results_limit",
|
|
|
84 |
)
|
85 |
|
86 |
st.multiselect(
|
87 |
label="Display columns",
|
88 |
options=["scores", "name", "topics", "stars", "license"],
|
89 |
-
default=["scores", "name", "topics"],
|
|
|
90 |
key="display_columns",
|
91 |
)
|
92 |
|
@@ -107,7 +117,7 @@ st.checkbox(
|
|
107 |
label="Add/Update this repo to the index",
|
108 |
value=False,
|
109 |
key="update_index",
|
110 |
-
help="
|
111 |
)
|
112 |
|
113 |
|
@@ -117,55 +127,57 @@ if search:
|
|
117 |
if match_res is not None:
|
118 |
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
doc_index = index.name.index(repo_name)
|
124 |
-
assert update_index is False
|
125 |
-
|
126 |
-
repo_doc = index[doc_index]
|
127 |
-
except (ValueError, AssertionError):
|
128 |
repo_info = run_model(model, repo_name, st.session_state.github_token)
|
129 |
if repo_info is None:
|
130 |
st.error("Repo not found or invalid GitHub token!")
|
131 |
st.stop()
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
else:
|
150 |
-
index[doc_index] = repo_doc
|
151 |
st.success("Repo updated in the index!")
|
152 |
|
153 |
-
|
|
|
|
|
154 |
else:
|
155 |
st.error("Invalid input!")
|
156 |
|
157 |
-
if "
|
158 |
-
|
159 |
-
|
160 |
limit = st.session_state.search_results_limit
|
161 |
st.dataframe(
|
162 |
pd.DataFrame(
|
163 |
[
|
164 |
{
|
165 |
-
"name":
|
166 |
-
"topics":
|
167 |
-
"stars":
|
168 |
-
"license":
|
169 |
}
|
170 |
],
|
171 |
)
|
@@ -174,14 +186,14 @@ if "query" in st.session_state:
|
|
174 |
display_columns = st.session_state.display_columns
|
175 |
code_sim_tab, doc_sim_tab = st.tabs(["Code Similarity", "Docstring Similarity"])
|
176 |
|
177 |
-
if
|
178 |
-
code_sim_res = run_search(index,
|
179 |
code_sim_tab.dataframe(code_sim_res[display_columns])
|
180 |
else:
|
181 |
-
code_sim_tab.error("No code was extracted for this repo!")
|
182 |
|
183 |
-
if
|
184 |
-
doc_sim_res = run_search(index,
|
185 |
doc_sim_tab.dataframe(doc_sim_res[display_columns])
|
186 |
else:
|
187 |
-
doc_sim_tab.error("No docstring was extracted for this repo!")
|
|
|
4 |
|
5 |
import pandas as pd
|
6 |
import streamlit as st
|
7 |
+
from docarray import BaseDoc
|
8 |
from docarray.typing import TorchTensor
|
9 |
+
from docarray.index import InMemoryExactNNIndex
|
10 |
from transformers import pipeline
|
11 |
|
12 |
+
INDEX_PATH = Path(__file__).parent.joinpath("data/index.bin")
|
13 |
|
14 |
|
15 |
@st.cache_resource(show_spinner="Loading dataset...")
|
16 |
def load_index():
|
17 |
class RepoDoc(BaseDoc):
|
18 |
name: str
|
19 |
+
topics: list # List[str]
|
20 |
stars: int
|
21 |
license: str
|
22 |
code_embedding: Optional[TorchTensor[768]]
|
23 |
doc_embedding: Optional[TorchTensor[768]]
|
24 |
|
25 |
+
default_doc = RepoDoc(
|
26 |
+
name="",
|
27 |
+
topics=[],
|
28 |
+
stars=0,
|
29 |
+
license="",
|
30 |
+
code_embedding=None,
|
31 |
+
doc_embedding=None,
|
32 |
+
)
|
33 |
+
|
34 |
+
return InMemoryExactNNIndex[RepoDoc](index_file_path=INDEX_PATH), default_doc
|
35 |
|
36 |
|
37 |
@st.cache_resource(show_spinner="Loading RepoSim pipeline...")
|
|
|
40 |
model="Lazyhope/RepoSim",
|
41 |
trust_remote_code=True,
|
42 |
device_map="auto",
|
|
|
43 |
)
|
44 |
|
45 |
|
|
|
60 |
|
61 |
|
62 |
def run_search(index, query, search_field, limit):
|
63 |
+
top_matches, scores = index.find(
|
64 |
+
query=query, search_field=search_field, limit=limit
|
65 |
)
|
66 |
|
67 |
search_results = top_matches.to_dataframe()
|
|
|
70 |
return search_results
|
71 |
|
72 |
|
73 |
+
index, default_doc = load_index()
|
74 |
model = load_model()
|
75 |
|
76 |
with st.sidebar:
|
|
|
89 |
value=10,
|
90 |
step=1,
|
91 |
key="search_results_limit",
|
92 |
+
help="Limit the number of search results",
|
93 |
)
|
94 |
|
95 |
st.multiselect(
|
96 |
label="Display columns",
|
97 |
options=["scores", "name", "topics", "stars", "license"],
|
98 |
+
default=["scores", "name", "topics", "stars", "license"],
|
99 |
+
help="Select columns to display in the search results",
|
100 |
key="display_columns",
|
101 |
)
|
102 |
|
|
|
117 |
label="Add/Update this repo to the index",
|
118 |
value=False,
|
119 |
key="update_index",
|
120 |
+
help="Encode the latest version of this repo and add/update it to the index",
|
121 |
)
|
122 |
|
123 |
|
|
|
127 |
if match_res is not None:
|
128 |
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
|
129 |
|
130 |
+
records = index.filter({"name": {"$eq": repo_name}})
|
131 |
+
query_doc = default_doc.copy() if not records else records[0]
|
132 |
+
if st.session_state.update_index or not records:
|
|
|
|
|
|
|
|
|
|
|
133 |
repo_info = run_model(model, repo_name, st.session_state.github_token)
|
134 |
if repo_info is None:
|
135 |
st.error("Repo not found or invalid GitHub token!")
|
136 |
st.stop()
|
137 |
|
138 |
+
# Update document inplace
|
139 |
+
query_doc.name = repo_info["name"]
|
140 |
+
query_doc.topics = repo_info["topics"]
|
141 |
+
query_doc.stars = repo_info["stars"]
|
142 |
+
query_doc.license = repo_info["license"]
|
143 |
+
query_doc.code_embedding = repo_info["mean_code_embedding"]
|
144 |
+
query_doc.doc_embedding = repo_info["mean_doc_embedding"]
|
145 |
+
|
146 |
+
if st.session_state.update_index:
|
147 |
+
if not records:
|
148 |
+
if not query_doc.license:
|
149 |
+
st.warning(
|
150 |
+
"License is missing in this repo and will not be persisted!"
|
151 |
+
)
|
152 |
+
elif (
|
153 |
+
query_doc.code_embedding is None and query_doc.doc_embedding is None
|
154 |
+
):
|
155 |
+
st.warning(
|
156 |
+
"This repo has no function code or docstring extracted and will not be persisted!"
|
157 |
+
)
|
158 |
+
else:
|
159 |
+
index.index(query_doc)
|
160 |
+
st.success("Repo added to the index!")
|
161 |
else:
|
|
|
162 |
st.success("Repo updated in the index!")
|
163 |
|
164 |
+
index.persist(file=INDEX_PATH)
|
165 |
+
|
166 |
+
st.session_state["query_doc"] = query_doc
|
167 |
else:
|
168 |
st.error("Invalid input!")
|
169 |
|
170 |
+
if "query_doc" in st.session_state:
|
171 |
+
query_doc = st.session_state.query_doc
|
|
|
172 |
limit = st.session_state.search_results_limit
|
173 |
st.dataframe(
|
174 |
pd.DataFrame(
|
175 |
[
|
176 |
{
|
177 |
+
"name": query_doc.name,
|
178 |
+
"topics": query_doc.topics,
|
179 |
+
"stars": query_doc.stars,
|
180 |
+
"license": query_doc.license,
|
181 |
}
|
182 |
],
|
183 |
)
|
|
|
186 |
display_columns = st.session_state.display_columns
|
187 |
code_sim_tab, doc_sim_tab = st.tabs(["Code Similarity", "Docstring Similarity"])
|
188 |
|
189 |
+
if query_doc.code_embedding is not None:
|
190 |
+
code_sim_res = run_search(index, query_doc, "code_embedding", limit)
|
191 |
code_sim_tab.dataframe(code_sim_res[display_columns])
|
192 |
else:
|
193 |
+
code_sim_tab.error("No function code was extracted for this repo!")
|
194 |
|
195 |
+
if query_doc.doc_embedding is not None:
|
196 |
+
doc_sim_res = run_search(index, query_doc, "doc_embedding", limit)
|
197 |
doc_sim_tab.dataframe(doc_sim_res[display_columns])
|
198 |
else:
|
199 |
+
doc_sim_tab.error("No function docstring was extracted for this repo!")
|