Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
filter library rather than pandas memory load
Browse files
app.py
CHANGED
@@ -15,7 +15,11 @@ from pymatgen.entries.computed_entries import (
|
|
15 |
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
|
18 |
-
subsets = [
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Load only the train split of the dataset
|
21 |
|
@@ -39,11 +43,11 @@ for subset in subsets:
|
|
39 |
datasets.append(dataset["train"])
|
40 |
|
41 |
# Convert the train split to a pandas DataFrame
|
42 |
-
df = pd.concat([x.to_pandas() for x in datasets])
|
43 |
-
train_df = dataset.to_pandas()
|
44 |
-
del dataset
|
45 |
-
|
46 |
|
|
|
47 |
|
48 |
|
49 |
def create_phase_diagram(
|
@@ -60,17 +64,23 @@ def create_phase_diagram(
|
|
60 |
|
61 |
# Filter entries based on functional
|
62 |
if functional == "PBE":
|
63 |
-
|
|
|
64 |
elif functional == "PBESol":
|
65 |
-
|
|
|
66 |
elif functional == "SCAN":
|
67 |
-
|
|
|
68 |
|
69 |
isubset = lambda x: set(x).issubset(element_list)
|
70 |
isintersection = lambda x: len(set(x).intersection(element_list)) > 0
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
# Fetch all entries from the Materials Project database
|
76 |
entries = [
|
|
|
15 |
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
|
18 |
+
subsets = [
|
19 |
+
"compatible_pbe",
|
20 |
+
"compatible_pbesol",
|
21 |
+
"compatible_scan",
|
22 |
+
]
|
23 |
|
24 |
# Load only the train split of the dataset
|
25 |
|
|
|
43 |
datasets.append(dataset["train"])
|
44 |
|
45 |
# Convert the train split to a pandas DataFrame
|
46 |
+
# df = pd.concat([x.to_pandas() for x in datasets])
|
47 |
+
# train_df = dataset.to_pandas()
|
48 |
+
# del dataset
|
|
|
49 |
|
50 |
+
dataset = concatenate_datasets(datasets)
|
51 |
|
52 |
|
53 |
def create_phase_diagram(
|
|
|
64 |
|
65 |
# Filter entries based on functional
|
66 |
if functional == "PBE":
|
67 |
+
ds_filter = dataset.filter(lambda example: example["functional"] == "pbe")
|
68 |
+
# entries_df = train_df[train_df["functional"] == "pbe"]
|
69 |
elif functional == "PBESol":
|
70 |
+
ds_filter = dataset.filter(lambda example: example["functional"] == "pbesol")
|
71 |
+
# entries_df = train_df[train_df["functional"] == "pbesol"]
|
72 |
elif functional == "SCAN":
|
73 |
+
ds_filter = dataset.filter(lambda example: example["functional"] == "scan")
|
74 |
+
# entries_df = train_df[train_df["functional"] == "scan"]
|
75 |
|
76 |
isubset = lambda x: set(x).issubset(element_list)
|
77 |
isintersection = lambda x: len(set(x).intersection(element_list)) > 0
|
78 |
+
ds_filter = ds_filter.filter(
|
79 |
+
lambda example: isintersection(example["functional"])
|
80 |
+
and isubset(example["functional"])
|
81 |
+
)
|
82 |
+
|
83 |
+
entries_df = ds_filter.to_pandas()
|
84 |
|
85 |
# Fetch all entries from the Materials Project database
|
86 |
entries = [
|