Spaces:
Runtime error
Runtime error
pandas switch
Browse files
app.py
CHANGED
@@ -22,44 +22,42 @@ subsets = [
|
|
22 |
"compatible_scan",
|
23 |
]
|
24 |
|
25 |
-
polars_dfs = {
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
)
|
32 |
-
for subset in subsets
|
33 |
-
}
|
34 |
-
|
35 |
-
# Load only the train split of the dataset
|
36 |
-
|
37 |
-
# datasets = []
|
38 |
-
# for subset in subsets:
|
39 |
-
# dataset = load_dataset(
|
40 |
-
# "LeMaterial/leMat-Bulk",
|
41 |
-
# subset,
|
42 |
-
# token=HF_TOKEN,
|
43 |
-
# columns=[
|
44 |
-
# "lattice_vectors",
|
45 |
-
# "species_at_sites",
|
46 |
-
# "cartesian_site_positions",
|
47 |
-
# "energy",
|
48 |
-
# "energy_corrected",
|
49 |
-
# "immutable_id",
|
50 |
-
# "elements",
|
51 |
-
# "functional",
|
52 |
-
# ],
|
53 |
# )
|
54 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Convert the train split to a pandas DataFrame
|
57 |
# df = pd.concat([x.to_pandas() for x in datasets])
|
58 |
# train_df = dataset.to_pandas()
|
59 |
# del dataset
|
60 |
|
61 |
-
dataset = concatenate_datasets(datasets)
|
62 |
-
|
63 |
# dataset_element_combination_dict = {}
|
64 |
|
65 |
# isubset = lambda x: set(x).issubset(element_list)
|
@@ -90,33 +88,34 @@ def create_phase_diagram(
|
|
90 |
|
91 |
# Filter entries based on functional
|
92 |
if functional == "PBE":
|
93 |
-
|
94 |
# entries_df = train_df[train_df["functional"] == "pbe"]
|
95 |
elif functional == "PBESol":
|
96 |
-
|
97 |
# entries_df = train_df[train_df["functional"] == "pbesol"]
|
98 |
elif functional == "SCAN":
|
99 |
-
|
100 |
# entries_df = train_df[train_df["functional"] == "scan"]
|
101 |
|
102 |
# entries_df = df.to_pandas()
|
103 |
|
104 |
-
|
105 |
-
# isintersection = lambda x: len(set(x).intersection(element_list)) > 0
|
106 |
-
# entries_df = entries_df[entries_df["elements"]](
|
107 |
-
# lambda example: isintersection(example["elements"])
|
108 |
-
# and isubset(example["elements"])
|
109 |
-
# )
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
entries_df = df.to_pandas()
|
120 |
|
121 |
# Fetch all entries from the Materials Project database
|
122 |
entries = [
|
|
|
22 |
"compatible_scan",
|
23 |
]
|
24 |
|
25 |
+
# polars_dfs = {
|
26 |
+
# subset: pl.read_parquet(
|
27 |
+
# "hf://datasets/LeMaterial/LeMat1/{}/train-*.parquet".format(subset),
|
28 |
+
# storage_options={
|
29 |
+
# "token": HF_TOKEN,
|
30 |
+
# },
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# )
|
32 |
+
# for subset in subsets
|
33 |
+
# }
|
34 |
+
|
35 |
+
# # Load only the train split of the dataset
|
36 |
+
|
37 |
+
subsets_ds = {}
|
38 |
+
for subset in subsets:
|
39 |
+
dataset = load_dataset(
|
40 |
+
"LeMaterial/leMat-Bulk",
|
41 |
+
subset,
|
42 |
+
token=HF_TOKEN,
|
43 |
+
columns=[
|
44 |
+
"lattice_vectors",
|
45 |
+
"species_at_sites",
|
46 |
+
"cartesian_site_positions",
|
47 |
+
"energy",
|
48 |
+
"energy_corrected",
|
49 |
+
"immutable_id",
|
50 |
+
"elements",
|
51 |
+
"functional",
|
52 |
+
],
|
53 |
+
)
|
54 |
+
subsets_ds[subset] = dataset["train"]
|
55 |
|
56 |
# Convert the train split to a pandas DataFrame
|
57 |
# df = pd.concat([x.to_pandas() for x in datasets])
|
58 |
# train_df = dataset.to_pandas()
|
59 |
# del dataset
|
60 |
|
|
|
|
|
61 |
# dataset_element_combination_dict = {}
|
62 |
|
63 |
# isubset = lambda x: set(x).issubset(element_list)
|
|
|
88 |
|
89 |
# Filter entries based on functional
|
90 |
if functional == "PBE":
|
91 |
+
entries_df = subsets_ds["compatible_pbe"].to_pandas()
|
92 |
# entries_df = train_df[train_df["functional"] == "pbe"]
|
93 |
elif functional == "PBESol":
|
94 |
+
entries_df = subsets_ds["compatible_pbesol"].to_pandas()
|
95 |
# entries_df = train_df[train_df["functional"] == "pbesol"]
|
96 |
elif functional == "SCAN":
|
97 |
+
entries_df = subsets_ds["compatible_scan"].to_pandas()
|
98 |
# entries_df = train_df[train_df["functional"] == "scan"]
|
99 |
|
100 |
# entries_df = df.to_pandas()
|
101 |
|
102 |
+
entries_df = entries_df[~entries_df['immutable_id'].isna()]
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
isubset = lambda x: set(x).issubset(element_list)
|
105 |
+
isintersection = lambda x: len(set(x).intersection(element_list)) > 0
|
106 |
+
entries_df = entries_df[
|
107 |
+
[isintersection(l) and isubset(l) for l in entries_df.elements.values.tolist()]
|
108 |
+
]
|
109 |
+
|
110 |
+
# df = df.filter((df.col("elements").list.contains(x) for x in element_list))
|
111 |
+
# df = df.filter(
|
112 |
+
# pl.col("elements")
|
113 |
+
# .list.eval(pl.element().is_in(element_list))
|
114 |
+
# .list.any()
|
115 |
+
# .alias("check")
|
116 |
+
# )
|
117 |
|
118 |
+
# entries_df = df.to_pandas()
|
119 |
|
120 |
# Fetch all entries from the Materials Project database
|
121 |
entries = [
|