Spaces:
Running
on
T4
Running
on
T4
File size: 7,215 Bytes
0164e4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from denoiser.conformer import ConformerBlock
from denoiser.utils import get_padding_2d, LearnableSigmoid_2d
from pesq import pesq
from joblib import Parallel, delayed
class DenseBlock(nn.Module):
def __init__(self, h, kernel_size=(3, 3), depth=4):
super(DenseBlock, self).__init__()
self.h = h
self.depth = depth
self.dense_block = nn.ModuleList([])
for i in range(depth):
dil = 2 ** i
dense_conv = nn.Sequential(
nn.Conv2d(h.dense_channel*(i+1), h.dense_channel, kernel_size, dilation=(dil, 1),
padding=get_padding_2d(kernel_size, (dil, 1))),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel)
)
self.dense_block.append(dense_conv)
def forward(self, x):
skip = x
for i in range(self.depth):
x = self.dense_block[i](skip)
skip = torch.cat([x, skip], dim=1)
return x
class DenseEncoder(nn.Module):
def __init__(self, h, in_channel):
super(DenseEncoder, self).__init__()
self.h = h
self.dense_conv_1 = nn.Sequential(
nn.Conv2d(in_channel, h.dense_channel, (1, 1)),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel))
self.dense_block = DenseBlock(h, depth=4) # [b, h.dense_channel, ndim_time, h.n_fft//2+1]
self.dense_conv_2 = nn.Sequential(
nn.Conv2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel))
def forward(self, x):
x = self.dense_conv_1(x) # [b, 64, T, F]
x = self.dense_block(x) # [b, 64, T, F]
x = self.dense_conv_2(x) # [b, 64, T, F//2]
return x
class MaskDecoder(nn.Module):
def __init__(self, h, out_channel=1):
super(MaskDecoder, self).__init__()
self.dense_block = DenseBlock(h, depth=4)
self.mask_conv = nn.Sequential(
nn.ConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)),
nn.Conv2d(h.dense_channel, out_channel, (1, 1)),
nn.InstanceNorm2d(out_channel, affine=True),
nn.PReLU(out_channel),
nn.Conv2d(out_channel, out_channel, (1, 1))
)
self.lsigmoid = LearnableSigmoid_2d(h.n_fft//2+1, beta=h.beta)
def forward(self, x):
x = self.dense_block(x)
x = self.mask_conv(x)
x = x.permute(0, 3, 2, 1).squeeze(-1)
x = self.lsigmoid(x).permute(0, 2, 1).unsqueeze(1)
return x
class PhaseDecoder(nn.Module):
def __init__(self, h, out_channel=1):
super(PhaseDecoder, self).__init__()
self.dense_block = DenseBlock(h, depth=4)
self.phase_conv = nn.Sequential(
nn.ConvTranspose2d(h.dense_channel, h.dense_channel, (1, 3), (1, 2)),
nn.InstanceNorm2d(h.dense_channel, affine=True),
nn.PReLU(h.dense_channel)
)
self.phase_conv_r = nn.Conv2d(h.dense_channel, out_channel, (1, 1))
self.phase_conv_i = nn.Conv2d(h.dense_channel, out_channel, (1, 1))
def forward(self, x):
x = self.dense_block(x)
x = self.phase_conv(x)
x_r = self.phase_conv_r(x)
x_i = self.phase_conv_i(x)
x = torch.atan2(x_i, x_r)
return x
class TSConformerBlock(nn.Module):
def __init__(self, h):
super(TSConformerBlock, self).__init__()
self.h = h
self.time_conformer = ConformerBlock(dim=h.dense_channel, n_head=4, ccm_kernel_size=31,
ffm_dropout=0.2, attn_dropout=0.2)
self.freq_conformer = ConformerBlock(dim=h.dense_channel, n_head=4, ccm_kernel_size=31,
ffm_dropout=0.2, attn_dropout=0.2)
def forward(self, x):
b, c, t, f = x.size()
x = x.permute(0, 3, 2, 1).contiguous().view(b*f, t, c)
x = self.time_conformer(x) + x
x = x.view(b, f, t, c).permute(0, 2, 1, 3).contiguous().view(b*t, f, c)
x = self.freq_conformer(x) + x
x = x.view(b, t, f, c).permute(0, 3, 1, 2)
return x
class MPNet(nn.Module):
def __init__(self, h, num_tscblocks=4):
super(MPNet, self).__init__()
self.h = h
self.num_tscblocks = num_tscblocks
self.dense_encoder = DenseEncoder(h, in_channel=2)
self.TSConformer = nn.ModuleList([])
for i in range(num_tscblocks):
self.TSConformer.append(TSConformerBlock(h))
self.mask_decoder = MaskDecoder(h, out_channel=1)
self.phase_decoder = PhaseDecoder(h, out_channel=1)
def forward(self, noisy_mag, noisy_pha): # [B, F, T]
noisy_mag = noisy_mag.unsqueeze(-1).permute(0, 3, 2, 1) # [B, 1, T, F]
noisy_pha = noisy_pha.unsqueeze(-1).permute(0, 3, 2, 1) # [B, 1, T, F]
x = torch.cat((noisy_mag, noisy_pha), dim=1) # [B, 2, T, F]
x = self.dense_encoder(x)
for i in range(self.num_tscblocks):
x = self.TSConformer[i](x)
denoised_mag = (noisy_mag * self.mask_decoder(x)).permute(0, 3, 2, 1).squeeze(-1)
denoised_pha = self.phase_decoder(x).permute(0, 3, 2, 1).squeeze(-1)
denoised_com = torch.stack((denoised_mag*torch.cos(denoised_pha),
denoised_mag*torch.sin(denoised_pha)), dim=-1)
return denoised_mag, denoised_pha, denoised_com
def phase_losses(phase_r, phase_g, h):
dim_freq = h.n_fft // 2 + 1
dim_time = phase_r.size(-1)
gd_matrix = (torch.triu(torch.ones(dim_freq, dim_freq), diagonal=1) - torch.triu(torch.ones(dim_freq, dim_freq), diagonal=2) - torch.eye(dim_freq)).to(phase_g.device)
gd_r = torch.matmul(phase_r.permute(0, 2, 1), gd_matrix)
gd_g = torch.matmul(phase_g.permute(0, 2, 1), gd_matrix)
iaf_matrix = (torch.triu(torch.ones(dim_time, dim_time), diagonal=1) - torch.triu(torch.ones(dim_time, dim_time), diagonal=2) - torch.eye(dim_time)).to(phase_g.device)
iaf_r = torch.matmul(phase_r, iaf_matrix)
iaf_g = torch.matmul(phase_g, iaf_matrix)
ip_loss = torch.mean(anti_wrapping_function(phase_r-phase_g))
gd_loss = torch.mean(anti_wrapping_function(gd_r-gd_g))
iaf_loss = torch.mean(anti_wrapping_function(iaf_r-iaf_g))
return ip_loss, gd_loss, iaf_loss
def anti_wrapping_function(x):
return torch.abs(x - torch.round(x / (2 * np.pi)) * 2 * np.pi)
def pesq_score(utts_r, utts_g, h):
pesq_score = Parallel(n_jobs=30)(delayed(eval_pesq)(
utts_r[i].squeeze().cpu().numpy(),
utts_g[i].squeeze().cpu().numpy(),
h.sampling_rate)
for i in range(len(utts_r)))
pesq_score = np.mean(pesq_score)
return pesq_score
def eval_pesq(clean_utt, esti_utt, sr):
try:
pesq_score = pesq(sr, clean_utt, esti_utt)
except:
# error can happen due to silent period
pesq_score = -1
return pesq_score
|