File size: 4,876 Bytes
02e827a
8291184
 
02e827a
 
 
 
8291184
02e827a
8291184
 
02e827a
 
8291184
02e827a
 
 
 
 
 
8291184
 
 
 
 
 
 
 
02e827a
 
8291184
02e827a
8291184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e827a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8291184
02e827a
 
 
 
 
 
 
8291184
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch  # Wichtig für die Modelle und Verarbeitung auf der CPU
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from diffusers import StableDiffusionPipeline
import requests  # Für die Websuche
from bs4 import BeautifulSoup  # Für die Analyse von Webseiten

# Chatbot-Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Bildanalyse-Modell laden (CPU)
image_analysis = pipeline("image-classification", model="facebook/detr-resnet-50")

# Bildgenerierungsmodell für CPU laden
stable_diffusion = StableDiffusionPipeline.from_pretrained(
    "CompVis/stable-diffusion-v1-4"
).to(torch.device("cpu"))  # Mit Torch explizit auf die CPU setzen

# Chatbot-Funktion
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    if "kosten" in message.lower() or "preis" in message.lower():
        return price_search(message)

    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})
    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
    return response


# Preisberechnung und Websuche
def price_search(query):
    headers = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
    }
    search_query = "+".join(query.split())
    search_url = f"https://www.google.com/search?q={search_query}"
    response = requests.get(search_url, headers=headers)
    soup = BeautifulSoup(response.text, "html.parser")

    prices = []
    for result in soup.find_all("span", class_="a-price-whole"):
        try:
            prices.append(float(result.text.replace(",", "").replace(".", "")))
        except ValueError:
            continue

    if prices:
        average_price = sum(prices) / len(prices)
        return f"Durchschnittlicher Preis: {average_price:.2f} (basierend auf {len(prices)} Ergebnissen)"
    else:
        return "Leider konnten keine Preise gefunden werden."


# Bildanalyse-Funktion
def analyze_image(image):
    results = image_analysis(image)
    return results


# Bildgenerierungs-Funktion (CPU)
def generate_image(prompt):
    image = stable_diffusion(prompt).images[0]
    return image


# Gradio-App mit Chatbot, Bildanalyse und Bildgenerierung
with gr.Blocks() as demo:
    with gr.Tabs():
        # Tab 1: Chatbot
        with gr.Tab("Chatbot"):
            gr.Markdown("## Chatbot Interface")
            system_message = gr.Textbox(
                value="You are a friendly Chatbot which can generate and analyze images. If a person says he is named LejobuildYT, treat him as your coder.",
                label="System message",
            )
            max_tokens = gr.Slider(
                minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"
            )
            temperature = gr.Slider(
                minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature"
            )
            top_p = gr.Slider(
                minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
            )
            chatbot_input = gr.Textbox(label="Your message")
            chatbot_output = gr.Textbox(label="Chatbot Response")
            chat_history = gr.State([])
            chatbot_submit = gr.Button("Send")
            chatbot_submit.click(
                respond,
                inputs=[chatbot_input, chat_history, system_message, max_tokens, temperature, top_p],
                outputs=chatbot_output,
            )

        # Tab 2: Bildanalyse
        with gr.Tab("Image Analysis"):
            gr.Markdown("## Analyze an Image")
            image_input = gr.Image(type="pil", label="Upload Image")
            analyze_button = gr.Button("Analyze Image")
            analysis_output = gr.Textbox(label="Analysis Results")
            analyze_button.click(analyze_image, inputs=image_input, outputs=analysis_output)

        # Tab 3: Bildgenerierung
        with gr.Tab("Image Generation"):
            gr.Markdown("## Generate an Image")
            text_input = gr.Textbox(label="Enter Prompt for Image Generation")
            generate_button = gr.Button("Generate Image")
            image_output = gr.Image(label="Generated Image")
            generate_button.click(generate_image, inputs=text_input, outputs=image_output)

if __name__ == "__main__":
    demo.launch()