Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,146 @@
|
|
1 |
-
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#QuantumNova
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
import requests
|
4 |
+
import random
|
5 |
+
import json
|
6 |
+
from huggingface_hub import InferenceClient # Importiere den Client für die API
|
7 |
+
import torch
|
8 |
|
9 |
+
class QuasiKI:
|
10 |
+
def __init__(self, max_feedback=2):
|
11 |
+
self.memory = [] # Gedächtnis für getroffene Entscheidungen
|
12 |
+
self.intentions = [] # Liste aktueller Ziele
|
13 |
+
self.quantum_randomness = [] # Speicher für Quanten-Zufallszahlen
|
14 |
+
self.max_feedback = max_feedback # Anzahl der Prompter für Feedback
|
15 |
+
|
16 |
+
# Hugging Face Client zum Online-Laden des Modells und Tokenizers
|
17 |
+
self.client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
18 |
+
print("Zephyr-7b-beta Modell erfolgreich über die Hugging Face API geladen!")
|
19 |
+
|
20 |
+
def fetch_quantum_randomness(self):
|
21 |
+
"""Lädt echte Quanten-Zufallszahlen von einer API."""
|
22 |
+
try:
|
23 |
+
response = requests.get("https://qrng.anu.edu.au/API/jsonI.php?length=10&type=uint8")
|
24 |
+
if response.status_code == 200:
|
25 |
+
data = response.json()
|
26 |
+
self.quantum_randomness = data.get("data", [])
|
27 |
+
print(f"Quantum randomness fetched: {self.quantum_randomness}")
|
28 |
+
else:
|
29 |
+
print("Failed to fetch quantum randomness. Using fallback randomness.")
|
30 |
+
self.quantum_randomness = [random.randint(0, 255) for _ in range(10)]
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error fetching quantum randomness: {e}")
|
33 |
+
self.quantum_randomness = [random.randint(0, 255) for _ in range(10)]
|
34 |
+
|
35 |
+
def process_input(self, user_input):
|
36 |
+
"""Verarbeitet die Eingabe und generiert eine Antwort."""
|
37 |
+
self.reflect()
|
38 |
+
|
39 |
+
# Wenn der Nutzer eine Suche durchführt
|
40 |
+
if user_input.lower().startswith("suche nach"):
|
41 |
+
query = user_input[10:].strip()
|
42 |
+
print(f"Suche im Web nach: {query}")
|
43 |
+
results = self.search_web(query)
|
44 |
+
if results:
|
45 |
+
response = "Hier sind die besten Ergebnisse:\n"
|
46 |
+
for i, result in enumerate(results, 1):
|
47 |
+
response += f"{i}. {result['title']} - {result['link']}\n"
|
48 |
+
else:
|
49 |
+
response = "Keine Ergebnisse gefunden oder ein Fehler ist aufgetreten."
|
50 |
+
else:
|
51 |
+
# Generiere Antwort mit Hugging Face Modell
|
52 |
+
response = self.generate_response(user_input)
|
53 |
+
|
54 |
+
# KI bewertet ihre eigene Antwort
|
55 |
+
self_evaluation = self.self_evaluate_response(response)
|
56 |
+
self.memory.append({"input": user_input, "response": response, "success": None, "self_eval": self_evaluation})
|
57 |
+
return response
|
58 |
+
|
59 |
+
def generate_response(self, input_text):
|
60 |
+
"""Generiert eine Antwort basierend auf dem Zephyr-Modell."""
|
61 |
+
# Anfrage an Hugging Face API zur Generierung einer Antwort
|
62 |
+
response = self.client.chat_completion([
|
63 |
+
{"role": "user", "content": input_text}
|
64 |
+
])
|
65 |
+
return response['choices'][0]['message']['content'].strip()
|
66 |
+
|
67 |
+
def self_evaluate_response(self, response):
|
68 |
+
"""Bewertet die Antwort der KI selbstständig."""
|
69 |
+
# Dummy-Logik: Bewertungen können angepasst werden
|
70 |
+
if "suche" in response.lower():
|
71 |
+
return "gut"
|
72 |
+
elif len(response.split()) > 5:
|
73 |
+
return "kreativ"
|
74 |
+
else:
|
75 |
+
return "unkreativ"
|
76 |
+
|
77 |
+
def collect_feedback(self):
|
78 |
+
"""Sammelt Feedback von mehreren Promptern."""
|
79 |
+
feedback_scores = {"sehr gut": 2, "gut": 1, "schlecht": -1, "sehr schlecht": -2}
|
80 |
+
total_feedback = 0
|
81 |
+
|
82 |
+
for i in range(1, self.max_feedback + 1):
|
83 |
+
feedback = input(f"Nutzer {i} Feedback (sehr gut, gut, schlecht, sehr schlecht): ").strip().lower()
|
84 |
+
total_feedback += feedback_scores.get(feedback, 0)
|
85 |
+
|
86 |
+
return total_feedback
|
87 |
+
|
88 |
+
def reflect(self):
|
89 |
+
"""Reflektiert über vergangene Aktionen."""
|
90 |
+
if not self.memory:
|
91 |
+
print("Ich habe noch nichts gelernt.")
|
92 |
+
else:
|
93 |
+
print("Selbstreflexion:")
|
94 |
+
for entry in self.memory[-5:]: # Nur die letzten 5 Erinnerungen anzeigen
|
95 |
+
print(f"- Eingabe: {entry['input']} -> Antwort: {entry['response']} (Erfolg: {entry.get('success')}, Selbstbewertung: {entry.get('self_eval')})")
|
96 |
+
|
97 |
+
def learn(self, feedback_score):
|
98 |
+
"""Lernt basierend auf Feedback."""
|
99 |
+
if not self.memory:
|
100 |
+
print("Keine vergangenen Aktionen zum Lernen verfügbar.")
|
101 |
+
return
|
102 |
+
|
103 |
+
# Letzte Aktion aktualisieren
|
104 |
+
if feedback_score > 0:
|
105 |
+
self.memory[-1]["success"] = True
|
106 |
+
print("Ich habe gelernt, dass meine Entscheidung erfolgreich war.")
|
107 |
+
elif feedback_score < 0:
|
108 |
+
self.memory[-1]["success"] = False
|
109 |
+
print("Ich werde meine Strategie anpassen.")
|
110 |
+
else:
|
111 |
+
print("Feedback neutral. Kein Lernen nötig.")
|
112 |
+
|
113 |
+
def save_memory(self, filename="memory.json"):
|
114 |
+
"""Speichert das Gedächtnis in einer Datei."""
|
115 |
+
with open(filename, "w") as f:
|
116 |
+
json.dump(self.memory, f)
|
117 |
+
print("Gedächtnis wurde gespeichert.")
|
118 |
+
|
119 |
+
def load_memory(self, filename="memory.json"):
|
120 |
+
"""Lädt das Gedächtnis aus einer Datei."""
|
121 |
+
try:
|
122 |
+
with open(filename, "r") as f:
|
123 |
+
self.memory = json.load(f)
|
124 |
+
print("Gedächtnis wurde geladen.")
|
125 |
+
except FileNotFoundError:
|
126 |
+
print("Keine gespeicherte Erinnerung gefunden.")
|
127 |
+
|
128 |
+
# Hauptprogramm
|
129 |
if __name__ == "__main__":
|
130 |
+
ai = QuasiKI(max_feedback=3) # Hier Anzahl der Feedback-Prompter einstellen
|
131 |
+
ai.fetch_quantum_randomness() # Starte mit Quanten-Zufallszahlen
|
132 |
+
|
133 |
+
# Gedächtnis laden, falls vorhanden
|
134 |
+
ai.load_memory()
|
135 |
+
while True:
|
136 |
+
user_input = input("\nWas möchtest du sagen? (oder 'exit' zum Beenden): ")
|
137 |
+
if user_input.lower() == "exit":
|
138 |
+
print("Beende das System. Bis bald!")
|
139 |
+
ai.save_memory() # Gedächtnis speichern vor Beenden
|
140 |
+
break
|
141 |
+
|
142 |
+
response = ai.process_input(user_input)
|
143 |
+
print(f"AI: {response}")
|
144 |
+
|
145 |
+
feedback_score = ai.collect_feedback()
|
146 |
+
ai.learn(feedback_score)
|