Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
8 |
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import requests
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
from duckduckgo_search import ddg
|
5 |
+
from googlesearch import search as google_search
|
6 |
+
# For Bing we use SerpAPI (requires SERPAPI_API_KEY env var)
|
7 |
+
from serpapi import GoogleSearch as SerpBing
|
8 |
+
from rake_nltk import Rake
|
9 |
import gradio as gr
|
10 |
+
from transformers import pipeline
|
11 |
|
12 |
+
# 1) Keyword extractor
|
13 |
+
rake = Rake()
|
14 |
+
def extract_keywords(text):
|
15 |
+
rake.extract_keywords_from_text(text)
|
16 |
+
return [kw for kw, score in rake.get_ranked_phrases_with_scores()[:5]]
|
17 |
|
18 |
+
# 2) Search functions
|
19 |
|
20 |
+
def bing_search(query, api_key, num=5):
|
21 |
+
params = {"engine": "bing", "q": query, "api_key": api_key}
|
22 |
+
client = SerpBing(params)
|
23 |
+
results = client.get_dict().get('organic_results', [])
|
24 |
+
return [r['link'] for r in results if not r.get('sponsored')][:num]
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def google_search_links(query, num=5):
|
27 |
+
return list(google_search(query, num_results=num))
|
|
|
|
|
|
|
28 |
|
29 |
+
def ddg_search_links(query, num=5):
|
30 |
+
return [r['href'] for r in ddg(query, max_results=num)]
|
31 |
|
32 |
+
# 3) Fetch page text
|
33 |
|
34 |
+
def fetch_text(url):
|
35 |
+
try:
|
36 |
+
resp = requests.get(url, timeout=3)
|
37 |
+
soup = BeautifulSoup(resp.text, 'html.parser')
|
38 |
+
texts = soup.find_all(['p', 'h1', 'h2', 'h3'])
|
39 |
+
return ' '.join([t.get_text() for t in texts])
|
40 |
+
except:
|
41 |
+
return ''
|
42 |
|
43 |
+
# 4) Model loader
|
44 |
+
generator = pipeline('text-generation', model='google/flan-t5-small', trust_remote_code=True)
|
45 |
|
46 |
+
def model_answer(prompt):
|
47 |
+
return generator(prompt, max_length=256, do_sample=False)[0]['generated_text']
|
48 |
|
49 |
+
# 5) Check for forbidden search
|
50 |
+
VERBOT = [
|
51 |
+
"bitte nicht im internet suchen", "keine websuche", "mach das ohne web",
|
52 |
+
"ohne online", "nur dein wissen", "nicht googeln", "such nicht"
|
53 |
+
]
|
54 |
+
def search_forbidden(prompt):
|
55 |
+
pl = prompt.lower()
|
56 |
+
return any(v in pl for v in VERBOT)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# 6) Check uncertainty
|
59 |
+
UNCERT = ["ich weiß nicht", "nicht in meinen daten", "keine information", "ich bin mir nicht sicher"]
|
60 |
+
def is_uncertain(answer):
|
61 |
+
al = answer.lower()
|
62 |
+
return any(u in al for u in UNCERT)
|
63 |
|
64 |
+
# 7) Combined logic
|
65 |
+
def process(prompt, web_enabled, serpapi_key):
|
66 |
+
# Extract keywords
|
67 |
+
keys = extract_keywords(prompt)
|
68 |
+
# Base answer
|
69 |
+
if search_forbidden(prompt):
|
70 |
+
ans = model_answer(prompt)
|
71 |
+
if is_uncertain(ans):
|
72 |
+
return (
|
73 |
+
"Ich weiß leider nichts über das Thema aus meinem Training. "
|
74 |
+
"Da du Websuche verboten hast, versuche ich es trotzdem, "
|
75 |
+
"aber es kann ungenau sein.\n\n" + ans
|
76 |
+
)
|
77 |
+
return ans
|
78 |
+
if not web_enabled:
|
79 |
+
return model_answer(prompt)
|
80 |
+
# Web enabled, try model first
|
81 |
+
ans = model_answer(prompt)
|
82 |
+
if not is_uncertain(ans):
|
83 |
+
return ans
|
84 |
+
# Uncertain: perform multi-search
|
85 |
+
# Google
|
86 |
+
g = google_search_links(' '.join(keys))
|
87 |
+
# DuckDuckGo
|
88 |
+
d = ddg_search_links(' '.join(keys))
|
89 |
+
# Bing
|
90 |
+
b = bing_search(' '.join(keys), serpapi_key)
|
91 |
+
urls = list(dict.fromkeys(g + d + b))
|
92 |
+
# Fetch and combine texts
|
93 |
+
texts = [fetch_text(u) for u in urls[:3]]
|
94 |
+
combined = '\n'.join(texts)
|
95 |
+
# Summarize
|
96 |
+
summary = generator(combined, max_length=256)[0]['generated_text']
|
97 |
+
return summary
|
98 |
+
|
99 |
+
# 8) Gradio UI
|
100 |
+
def main(prompt, web_enabled, serpapi_key):
|
101 |
+
return process(prompt, web_enabled, serpapi_key)
|
102 |
+
|
103 |
+
with gr.Blocks() as demo:
|
104 |
+
gr.Markdown("# Intelligente KI mit Multi-Engine-Websuche")
|
105 |
+
with gr.Row():
|
106 |
+
prompt = gr.Textbox(label="Dein Prompt", lines=3)
|
107 |
+
web = gr.Checkbox(label="Websuche aktivieren", value=False)
|
108 |
+
serp = gr.Textbox(label="SerpAPI Key (für Bing)", placeholder="Optional für Bing-Suche")
|
109 |
+
btn = gr.Button("Antwort generieren")
|
110 |
+
output = gr.Textbox(label="Antwort", lines=10)
|
111 |
+
btn.click(main, inputs=[prompt, web, serp], outputs=output)
|
112 |
+
|
113 |
+
demo.launch()
|