LejobuildYT commited on
Commit
41dfbd8
·
verified ·
1 Parent(s): 242fab9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +100 -51
app.py CHANGED
@@ -1,64 +1,113 @@
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import requests
3
+ from bs4 import BeautifulSoup
4
+ from duckduckgo_search import ddg
5
+ from googlesearch import search as google_search
6
+ # For Bing we use SerpAPI (requires SERPAPI_API_KEY env var)
7
+ from serpapi import GoogleSearch as SerpBing
8
+ from rake_nltk import Rake
9
  import gradio as gr
10
+ from transformers import pipeline
11
 
12
+ # 1) Keyword extractor
13
+ rake = Rake()
14
+ def extract_keywords(text):
15
+ rake.extract_keywords_from_text(text)
16
+ return [kw for kw, score in rake.get_ranked_phrases_with_scores()[:5]]
17
 
18
+ # 2) Search functions
19
 
20
+ def bing_search(query, api_key, num=5):
21
+ params = {"engine": "bing", "q": query, "api_key": api_key}
22
+ client = SerpBing(params)
23
+ results = client.get_dict().get('organic_results', [])
24
+ return [r['link'] for r in results if not r.get('sponsored')][:num]
 
 
 
 
25
 
26
+ def google_search_links(query, num=5):
27
+ return list(google_search(query, num_results=num))
 
 
 
28
 
29
+ def ddg_search_links(query, num=5):
30
+ return [r['href'] for r in ddg(query, max_results=num)]
31
 
32
+ # 3) Fetch page text
33
 
34
+ def fetch_text(url):
35
+ try:
36
+ resp = requests.get(url, timeout=3)
37
+ soup = BeautifulSoup(resp.text, 'html.parser')
38
+ texts = soup.find_all(['p', 'h1', 'h2', 'h3'])
39
+ return ' '.join([t.get_text() for t in texts])
40
+ except:
41
+ return ''
42
 
43
+ # 4) Model loader
44
+ generator = pipeline('text-generation', model='google/flan-t5-small', trust_remote_code=True)
45
 
46
+ def model_answer(prompt):
47
+ return generator(prompt, max_length=256, do_sample=False)[0]['generated_text']
48
 
49
+ # 5) Check for forbidden search
50
+ VERBOT = [
51
+ "bitte nicht im internet suchen", "keine websuche", "mach das ohne web",
52
+ "ohne online", "nur dein wissen", "nicht googeln", "such nicht"
53
+ ]
54
+ def search_forbidden(prompt):
55
+ pl = prompt.lower()
56
+ return any(v in pl for v in VERBOT)
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # 6) Check uncertainty
59
+ UNCERT = ["ich weiß nicht", "nicht in meinen daten", "keine information", "ich bin mir nicht sicher"]
60
+ def is_uncertain(answer):
61
+ al = answer.lower()
62
+ return any(u in al for u in UNCERT)
63
 
64
+ # 7) Combined logic
65
+ def process(prompt, web_enabled, serpapi_key):
66
+ # Extract keywords
67
+ keys = extract_keywords(prompt)
68
+ # Base answer
69
+ if search_forbidden(prompt):
70
+ ans = model_answer(prompt)
71
+ if is_uncertain(ans):
72
+ return (
73
+ "Ich weiß leider nichts über das Thema aus meinem Training. "
74
+ "Da du Websuche verboten hast, versuche ich es trotzdem, "
75
+ "aber es kann ungenau sein.\n\n" + ans
76
+ )
77
+ return ans
78
+ if not web_enabled:
79
+ return model_answer(prompt)
80
+ # Web enabled, try model first
81
+ ans = model_answer(prompt)
82
+ if not is_uncertain(ans):
83
+ return ans
84
+ # Uncertain: perform multi-search
85
+ # Google
86
+ g = google_search_links(' '.join(keys))
87
+ # DuckDuckGo
88
+ d = ddg_search_links(' '.join(keys))
89
+ # Bing
90
+ b = bing_search(' '.join(keys), serpapi_key)
91
+ urls = list(dict.fromkeys(g + d + b))
92
+ # Fetch and combine texts
93
+ texts = [fetch_text(u) for u in urls[:3]]
94
+ combined = '\n'.join(texts)
95
+ # Summarize
96
+ summary = generator(combined, max_length=256)[0]['generated_text']
97
+ return summary
98
+
99
+ # 8) Gradio UI
100
+ def main(prompt, web_enabled, serpapi_key):
101
+ return process(prompt, web_enabled, serpapi_key)
102
+
103
+ with gr.Blocks() as demo:
104
+ gr.Markdown("# Intelligente KI mit Multi-Engine-Websuche")
105
+ with gr.Row():
106
+ prompt = gr.Textbox(label="Dein Prompt", lines=3)
107
+ web = gr.Checkbox(label="Websuche aktivieren", value=False)
108
+ serp = gr.Textbox(label="SerpAPI Key (für Bing)", placeholder="Optional für Bing-Suche")
109
+ btn = gr.Button("Antwort generieren")
110
+ output = gr.Textbox(label="Antwort", lines=10)
111
+ btn.click(main, inputs=[prompt, web, serp], outputs=output)
112
+
113
+ demo.launch()