Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
|
|
1 |
import re
|
2 |
import requests
|
3 |
from bs4 import BeautifulSoup
|
4 |
-
|
|
|
|
|
5 |
from googlesearch import search as google_search
|
6 |
# For Bing we use SerpAPI (requires SERPAPI_API_KEY env var)
|
7 |
from serpapi import GoogleSearch as SerpBing
|
@@ -9,63 +12,71 @@ from rake_nltk import Rake
|
|
9 |
import gradio as gr
|
10 |
from transformers import pipeline
|
11 |
|
12 |
-
# 1) Keyword extractor
|
13 |
rake = Rake()
|
14 |
def extract_keywords(text):
|
15 |
rake.extract_keywords_from_text(text)
|
16 |
-
return
|
|
|
17 |
|
18 |
# 2) Search functions
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
def
|
|
|
|
|
|
|
21 |
params = {"engine": "bing", "q": query, "api_key": api_key}
|
22 |
client = SerpBing(params)
|
23 |
results = client.get_dict().get('organic_results', [])
|
|
|
24 |
return [r['link'] for r in results if not r.get('sponsored')][:num]
|
25 |
|
26 |
-
|
27 |
-
return list(google_search(query, num_results=num))
|
28 |
-
|
29 |
-
def ddg_search_links(query, num=5):
|
30 |
-
return [r['href'] for r in ddg(query, max_results=num)]
|
31 |
-
|
32 |
-
# 3) Fetch page text
|
33 |
-
|
34 |
def fetch_text(url):
|
35 |
try:
|
36 |
resp = requests.get(url, timeout=3)
|
37 |
soup = BeautifulSoup(resp.text, 'html.parser')
|
38 |
texts = soup.find_all(['p', 'h1', 'h2', 'h3'])
|
39 |
-
return ' '.join(
|
40 |
except:
|
41 |
return ''
|
42 |
|
43 |
-
# 4) Model loader
|
44 |
generator = pipeline('text-generation', model='google/flan-t5-small', trust_remote_code=True)
|
45 |
|
46 |
def model_answer(prompt):
|
47 |
return generator(prompt, max_length=256, do_sample=False)[0]['generated_text']
|
48 |
|
49 |
-
# 5)
|
50 |
-
|
51 |
"bitte nicht im internet suchen", "keine websuche", "mach das ohne web",
|
52 |
"ohne online", "nur dein wissen", "nicht googeln", "such nicht"
|
53 |
]
|
54 |
-
def search_forbidden(prompt):
|
55 |
pl = prompt.lower()
|
56 |
-
return any(
|
57 |
|
58 |
-
# 6) Check
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
al = answer.lower()
|
62 |
-
return any(
|
63 |
|
64 |
-
# 7)
|
65 |
def process(prompt, web_enabled, serpapi_key):
|
66 |
-
# Extract keywords
|
67 |
-
|
68 |
-
|
|
|
|
|
69 |
if search_forbidden(prompt):
|
70 |
ans = model_answer(prompt)
|
71 |
if is_uncertain(ans):
|
@@ -75,39 +86,47 @@ def process(prompt, web_enabled, serpapi_key):
|
|
75 |
"aber es kann ungenau sein.\n\n" + ans
|
76 |
)
|
77 |
return ans
|
|
|
|
|
78 |
if not web_enabled:
|
79 |
return model_answer(prompt)
|
80 |
-
|
|
|
81 |
ans = model_answer(prompt)
|
|
|
82 |
if not is_uncertain(ans):
|
83 |
return ans
|
84 |
-
|
85 |
-
#
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
combined = '\n'.join(texts)
|
95 |
-
# Summarize
|
96 |
-
summary = generator(combined, max_length=256)[0]['generated_text']
|
97 |
return summary
|
98 |
|
99 |
# 8) Gradio UI
|
100 |
-
def main(prompt, web_enabled, serpapi_key):
|
101 |
-
return process(prompt, web_enabled, serpapi_key)
|
102 |
-
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("# Intelligente KI mit Multi-Engine-Websuche")
|
105 |
with gr.Row():
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
btn = gr.Button("Antwort generieren")
|
110 |
output = gr.Textbox(label="Antwort", lines=10)
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
demo.launch()
|
|
|
|
1 |
+
```python
|
2 |
import re
|
3 |
import requests
|
4 |
from bs4 import BeautifulSoup
|
5 |
+
# DuckDuckGo Search: use DDGS class
|
6 |
+
from duckduckgo_search import DDGS
|
7 |
+
# Google search
|
8 |
from googlesearch import search as google_search
|
9 |
# For Bing we use SerpAPI (requires SERPAPI_API_KEY env var)
|
10 |
from serpapi import GoogleSearch as SerpBing
|
|
|
12 |
import gradio as gr
|
13 |
from transformers import pipeline
|
14 |
|
15 |
+
# 1) Keyword extractor using RAKE
|
16 |
rake = Rake()
|
17 |
def extract_keywords(text):
|
18 |
rake.extract_keywords_from_text(text)
|
19 |
+
# return top 5 keywords
|
20 |
+
return [kw for kw in rake.get_ranked_phrases()[:5]]
|
21 |
|
22 |
# 2) Search functions
|
23 |
+
# DuckDuckGo using DDGS
|
24 |
+
def ddg_search_links(query, num=5):
|
25 |
+
ddgs = DDGS()
|
26 |
+
results = ddgs.text(query, max_results=num)
|
27 |
+
# results are dicts with 'href'
|
28 |
+
return [r['href'] for r in results]
|
29 |
|
30 |
+
def google_search_links(query, num=5):
|
31 |
+
return list(google_search(query, num_results=num))
|
32 |
+
|
33 |
+
def bing_search_links(query, api_key, num=5):
|
34 |
params = {"engine": "bing", "q": query, "api_key": api_key}
|
35 |
client = SerpBing(params)
|
36 |
results = client.get_dict().get('organic_results', [])
|
37 |
+
# filter sponsored and return links
|
38 |
return [r['link'] for r in results if not r.get('sponsored')][:num]
|
39 |
|
40 |
+
# 3) Fetch page text for summarization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def fetch_text(url):
|
42 |
try:
|
43 |
resp = requests.get(url, timeout=3)
|
44 |
soup = BeautifulSoup(resp.text, 'html.parser')
|
45 |
texts = soup.find_all(['p', 'h1', 'h2', 'h3'])
|
46 |
+
return ' '.join(t.get_text() for t in texts)
|
47 |
except:
|
48 |
return ''
|
49 |
|
50 |
+
# 4) Model loader: lightweight HF model
|
51 |
generator = pipeline('text-generation', model='google/flan-t5-small', trust_remote_code=True)
|
52 |
|
53 |
def model_answer(prompt):
|
54 |
return generator(prompt, max_length=256, do_sample=False)[0]['generated_text']
|
55 |
|
56 |
+
# 5) Detect forbidden search phrases
|
57 |
+
FORBID_PATTERNS = [
|
58 |
"bitte nicht im internet suchen", "keine websuche", "mach das ohne web",
|
59 |
"ohne online", "nur dein wissen", "nicht googeln", "such nicht"
|
60 |
]
|
61 |
+
def search_forbidden(prompt: str) -> bool:
|
62 |
pl = prompt.lower()
|
63 |
+
return any(phrase in pl for phrase in FORBID_PATTERNS)
|
64 |
|
65 |
+
# 6) Check if answer is uncertain
|
66 |
+
UNCERTAIN_MARKERS = [
|
67 |
+
"ich weiß nicht", "nicht in meinen daten", "keine information", "ich bin mir nicht sicher"
|
68 |
+
]
|
69 |
+
def is_uncertain(answer: str) -> bool:
|
70 |
al = answer.lower()
|
71 |
+
return any(marker in al for marker in UNCERTAIN_MARKERS)
|
72 |
|
73 |
+
# 7) Core processing logic
|
74 |
def process(prompt, web_enabled, serpapi_key):
|
75 |
+
# Extract keywords for search
|
76 |
+
keywords = extract_keywords(prompt)
|
77 |
+
query = ' '.join(keywords)
|
78 |
+
|
79 |
+
# If user forbids search
|
80 |
if search_forbidden(prompt):
|
81 |
ans = model_answer(prompt)
|
82 |
if is_uncertain(ans):
|
|
|
86 |
"aber es kann ungenau sein.\n\n" + ans
|
87 |
)
|
88 |
return ans
|
89 |
+
|
90 |
+
# If websearch disabled, just use model
|
91 |
if not web_enabled:
|
92 |
return model_answer(prompt)
|
93 |
+
|
94 |
+
# Websearch enabled: model first
|
95 |
ans = model_answer(prompt)
|
96 |
+
# If model confident, return
|
97 |
if not is_uncertain(ans):
|
98 |
return ans
|
99 |
+
|
100 |
+
# Model uncertain: perform multi-search
|
101 |
+
links = []
|
102 |
+
links += google_search_links(query)
|
103 |
+
links += ddg_search_links(query)
|
104 |
+
links += bing_search_links(query, serpapi_key)
|
105 |
+
# Deduplicate
|
106 |
+
unique_links = list(dict.fromkeys(links))
|
107 |
+
|
108 |
+
# Fetch top 3 pages
|
109 |
+
texts = [fetch_text(u) for u in unique_links[:3]]
|
110 |
combined = '\n'.join(texts)
|
111 |
+
# Summarize combined content
|
112 |
+
summary = generator(combined, max_length=256, do_sample=False)[0]['generated_text']
|
113 |
return summary
|
114 |
|
115 |
# 8) Gradio UI
|
|
|
|
|
|
|
116 |
with gr.Blocks() as demo:
|
117 |
gr.Markdown("# Intelligente KI mit Multi-Engine-Websuche")
|
118 |
with gr.Row():
|
119 |
+
prompt_input = gr.Textbox(label="Dein Prompt", lines=3)
|
120 |
+
web_switch = gr.Checkbox(label="Websuche aktivieren", value=False)
|
121 |
+
serp_input = gr.Textbox(label="SerpAPI Key (für Bing)", placeholder="Optional für Bing-Suche")
|
122 |
btn = gr.Button("Antwort generieren")
|
123 |
output = gr.Textbox(label="Antwort", lines=10)
|
124 |
+
|
125 |
+
btn.click(
|
126 |
+
fn=process,
|
127 |
+
inputs=[prompt_input, web_switch, serp_input],
|
128 |
+
outputs=output
|
129 |
+
)
|
130 |
|
131 |
demo.launch()
|
132 |
+
```
|