Spaces:
Runtime error
Runtime error
from lcm_pipeline import LatentConsistencyModelPipeline | |
from lcm_scheduler import LCMScheduler | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from transformers import CLIPTokenizer, CLIPTextModel, CLIPImageProcessor | |
import os | |
import torch | |
from tqdm import tqdm | |
from safetensors.torch import load_file | |
# Input Prompt: | |
prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair" | |
# Save Path: | |
save_path = "./lcm_images" | |
os.makedirs(save_path, exist_ok=True) | |
# Origin SD Model ID: | |
model_id = "digiplay/DreamShaper_7" | |
# Initalize Diffusers Model: | |
vae = AutoencoderKL.from_pretrained(model_id, subfolder="vae") | |
text_encoder = CLIPTextModel.from_pretrained(model_id, subfolder="text_encoder") | |
tokenizer = CLIPTokenizer.from_pretrained(model_id, subfolder="tokenizer") | |
unet = UNet2DConditionModel.from_pretrained(model_id, subfolder="unet", device_map=None, low_cpu_mem_usage=False, local_files_only=True) | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(model_id, subfolder="safety_checker") | |
feature_extractor = CLIPImageProcessor.from_pretrained(model_id, subfolder="feature_extractor") | |
# Initalize Scheduler: | |
scheduler = LCMScheduler(beta_start=0.00085, beta_end=0.0120, beta_schedule="scaled_linear", prediction_type="epsilon") | |
# Replace the unet with LCM: | |
lcm_unet_ckpt = "./LCM_Dreamshaper_v7_4k.safetensors" | |
ckpt = load_file(lcm_unet_ckpt) | |
m, u = unet.load_state_dict(ckpt, strict=False) | |
if len(m) > 0: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0: | |
print("unexpected keys:") | |
print(u) | |
# LCM Pipeline: | |
pipe = LatentConsistencyModelPipeline(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor) | |
pipe = pipe.to("cuda") | |
# Output Images: | |
images = pipe(prompt=prompt, num_images_per_prompt=4, num_inference_steps=4, guidance_scale=8.0, lcm_origin_steps=50).images | |
# Save Images: | |
for i in tqdm(range(len(images))): | |
output_path = os.path.join(save_path, "{}.png".format(i)) | |
image = images[i] | |
image.save(output_path) |