File size: 3,121 Bytes
6ac5943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# API Documentation for `Lenylvt/VideoSubtitleCreation-API`
This documentation explains how to interact with the VideoSubtitleCreation API, which provides two main functionalities: transcribing and adding subtitles to videos, and translating subtitles before adding them to videos. It can be accessed using Python and JavaScript.

## API Endpoints

The API provides two endpoints that can be accessed using the `gradio_client` Python library [docs](https://www.gradio.app/guides/getting-started-with-the-python-client) or the `@gradio/client` JavaScript package [docs](https://www.gradio.app/guides/getting-started-with-the-js-client).

### Common Step 1: Installation

Before using the API, install the required client library.

**For Python:**

```python
pip install gradio_client
```

**For JavaScript:**

```bash
npm i -D @gradio/client
```

### API Endpoint: /transcribe_and_add_subtitles

#### Python Usage

```python
from gradio_client import Client

client = Client("Lenylvt/VideoSubtitleCreation-API")
result = client.predict(
    {"video": "https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4", "subtitles": None},
    "tiny",
    api_name="/transcribe_and_add_subtitles"
)
print(result)
```

**Return Type(s):**

- A dictionary with keys `video` and `subtitles`, representing the output in 'Processed Video' Video component and the path to the 'Subtitles File (.srt)' File component, respectively.

#### JavaScript Usage

```javascript
import { client } from "@gradio/client";

const response_0 = await fetch("[object Object]");
const exampleVideo = await response_0.blob();

const app = await client("Lenylvt/VideoSubtitleCreation-API");
const result = await app.predict("/transcribe_and_add_subtitles", [
    exampleVideo,
    "tiny"
]);

console.log(result.data);
```

**Return Type(s):**

- `undefined` values representing the output in both 'Processed Video' Video component and 'Subtitles File (.srt)' File component, due to a potential issue in the mock code snippet.

### API Endpoint: /translate_subtitles_and_add_to_video

#### Python Usage

```python
from gradio_client import Client

client = Client("Lenylvt/VideoSubtitleCreation-API")
result = client.predict(
    {"video": "https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4", "subtitles": None},
    "aa",
    "aa",
    "tiny",
    api_name="/translate_subtitles_and_add_to_video"
)
print(result)
```

**Return Type(s):**

- A dictionary similar to the first endpoint, including processed video and subtitle file paths.

#### JavaScript Usage

```javascript
import { client } from "@gradio/client";

const response_0 = await fetch("[object Object]");
const exampleVideo = await response_0.blob();

const app = await client("Lenylvt/VideoSubtitleCreation-API");
const result = await app.predict("/translate_subtitles_and_add_to_video", [
    exampleVideo,
    "aa",
    "aa",
    "tiny"
]);

console.log(result.data);
```

**Return Type(s):**

- `undefined` values for both 'Processed Video' and 'Subtitles File (.srt)' components, due to a potential issue in the mock code snippet.