Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,48 @@
|
|
1 |
-
from huggingface_hub import InferenceApi
|
2 |
import gradio as gr
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
return translated_text
|
19 |
|
|
|
20 |
iface = gr.Interface(
|
21 |
fn=translate_text,
|
22 |
-
inputs=[gr.Textbox(
|
23 |
-
outputs=gr.Textbox(
|
24 |
-
title="
|
25 |
-
description="
|
26 |
)
|
27 |
|
28 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import MarianMTModel, MarianTokenizer
|
3 |
|
4 |
+
# Specify the model name from the Hugging Face Hub, for example, an English to French model by the University of Helsinki
|
5 |
+
model_name = "Helsinki-NLP/opus-mt-en-fr"
|
6 |
|
7 |
+
# Load the tokenizer and model
|
8 |
+
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
9 |
+
model = MarianMTModel.from_pretrained(model_name)
|
10 |
+
|
11 |
+
# Function to handle translation
|
12 |
+
def translate_text(text, target_language):
|
13 |
+
# Adjust the model_name based on the target language
|
14 |
+
# Note: You'd need to find the exact model names for each language pair you want to support
|
15 |
+
model_name_map = {
|
16 |
+
"French": "Helsinki-NLP/opus-mt-en-fr",
|
17 |
+
"German": "Helsinki-NLP/opus-mt-en-de",
|
18 |
+
"Spanish": "Helsinki-NLP/opus-mt-en-es",
|
19 |
+
}
|
20 |
+
|
21 |
+
selected_model_name = model_name_map.get(target_language, "Helsinki-NLP/opus-mt-en-fr")
|
22 |
+
|
23 |
+
# Load the selected model and tokenizer
|
24 |
+
tokenizer = MarianTokenizer.from_pretrained(selected_model_name)
|
25 |
+
model = MarianMTModel.from_pretrained(selected_model_name)
|
26 |
+
|
27 |
+
# Prepare the text for translation
|
28 |
+
encoded_text = tokenizer.prepare_seq2seq_batch([text], return_tensors="pt")
|
29 |
+
|
30 |
+
# Perform the translation
|
31 |
+
translated = model.generate(**encoded_text)
|
32 |
+
|
33 |
+
# Decode the translated text
|
34 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
35 |
+
|
36 |
return translated_text
|
37 |
|
38 |
+
# Define the interface
|
39 |
iface = gr.Interface(
|
40 |
fn=translate_text,
|
41 |
+
inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter text to translate..."), gr.inputs.Dropdown(["French", "German", "Spanish"], label="Select Language")],
|
42 |
+
outputs=[gr.outputs.Textbox()],
|
43 |
+
title="Text Translator with Helsinki NLP Models",
|
44 |
+
description="Select a language to translate English text into using University of Helsinki models."
|
45 |
)
|
46 |
|
47 |
+
# Launch the app
|
48 |
+
iface.launch()
|