import gradio as gr from transformers import MarianMTModel, MarianTokenizer # Function to dynamically load the model and tokenizer based on selected languages def translate_text(text, source_language_code, target_language_code): # Construct model name using ISO 639-1 codes model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}" # Check if source and target languages are the same, which is not supported for translation if source_language_code == target_language_code: return "Translation between the same languages is not supported." # Load tokenizer and model try: tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) except Exception as e: return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}" # Translate text translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)) translated_text = tokenizer.decode(translated[0], skip_special_tokens=True) return translated_text # Define language options (ISO 639-1 codes and names) language_options = [ ('en', 'English (en)'), ('es', 'Spanish (es)'), ('fr', 'French (fr)'), ('de', 'German (de)'), ('zh', 'Chinese (zh)'), ('ru', 'Russian (ru)'), ('ar', 'Arabic (ar)'), ('it', 'Italian (it)'), ('pt', 'Portuguese (pt)'), ('nl', 'Dutch (nl)'), # Add more languages as needed ] # Create dropdowns for source and target languages, using only the codes for value source_language_dropdown = gr.inputs.Dropdown(choices=[(code, name) for code, name in language_options], label="Source Language") target_language_dropdown = gr.inputs.Dropdown(choices=[(code, name) for code, name in language_options], label="Target Language") # Define the interface iface = gr.Interface( fn=translate_text, inputs=[gr.inputs.Textbox(lines=2, placeholder="Enter text to translate..."), source_language_dropdown, target_language_dropdown], outputs=gr.outputs.Textbox(), title="Text Translator with Dynamic Helsinki NLP Models", description="Select source and target languages to translate text using Helsinki NLP models." ) # Launch the app iface.launch()