Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
from faster_whisper import WhisperModel
|
3 |
import logging
|
4 |
-
import os
|
5 |
-
from moviepy.editor import VideoFileClip
|
6 |
-
import ffmpeg # Make sure to install ffmpeg-python
|
7 |
from transformers import MarianMTModel, MarianTokenizer
|
8 |
import pandas as pd
|
9 |
-
import pysrt
|
10 |
import requests
|
11 |
|
12 |
# Configure logging for debugging purposes
|
@@ -22,29 +18,18 @@ df['ISO 639-1'] = df['ISO 639-1'].str.strip()
|
|
22 |
# Prepare language options for the dropdown
|
23 |
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']}") for index, row in df.iterrows()]
|
24 |
|
25 |
-
def
|
26 |
-
"""Convert seconds to HH:MM:SS.mmm format."""
|
27 |
-
hours = int(seconds // 3600)
|
28 |
-
minutes = int((seconds % 3600) // 60)
|
29 |
-
seconds_remainder = seconds % 60
|
30 |
-
return f"{hours:02d}:{minutes:02d}:{seconds_remainder:06.3f}"
|
31 |
-
|
32 |
-
def extract_audio(video_path):
|
33 |
-
"""Extract audio from video to a temporary audio file."""
|
34 |
-
output_audio_path = '/tmp/audio.wav'
|
35 |
-
ffmpeg.input(video_path).output(output_audio_path, acodec='pcm_s16le', ac=1, ar='16k').run(quiet=True)
|
36 |
-
return output_audio_path
|
37 |
-
|
38 |
-
def transcribe_and_optionally_translate(video_file, source_language, target_language, model_size, allow_modification):
|
39 |
-
audio_file = extract_audio(video_file)
|
40 |
-
|
41 |
# Transcription
|
42 |
-
device = "cpu" #
|
43 |
-
compute_type = "int8" #
|
44 |
model = WhisperModel(model_size, device=device, compute_type=compute_type)
|
45 |
segments, _ = model.transcribe(audio_file)
|
46 |
transcription = " ".join([segment.text for segment in segments])
|
47 |
|
|
|
|
|
|
|
|
|
48 |
# Translation
|
49 |
if source_language != target_language:
|
50 |
model_name = f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
@@ -53,7 +38,7 @@ def transcribe_and_optionally_translate(video_file, source_language, target_lang
|
|
53 |
translated = model.generate(**tokenizer(transcription, return_tensors="pt", padding=True, truncation=True, max_length=512))
|
54 |
transcription = tokenizer.decode(translated[0], skip_special_tokens=True)
|
55 |
|
56 |
-
return transcription,
|
57 |
|
58 |
def add_hard_subtitle_to_video(input_video, transcript):
|
59 |
"""Add hard subtitles to video."""
|
@@ -66,14 +51,16 @@ def add_hard_subtitle_to_video(input_video, transcript):
|
|
66 |
|
67 |
return output_video_path
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
72 |
|
73 |
if can_modify and modified_transcript:
|
74 |
-
|
|
|
|
|
75 |
|
76 |
-
# Add hard subtitles to the video
|
77 |
output_video = add_hard_subtitle_to_video(video, transcript)
|
78 |
return output_video
|
79 |
|
@@ -81,17 +68,18 @@ def process_video(video, source_language, target_language, model_size='base', al
|
|
81 |
app = gr.Interface(
|
82 |
fn=process_video,
|
83 |
inputs=[
|
84 |
-
gr.Video(label="Upload Video"),
|
85 |
gr.Dropdown(choices=language_options, label="Source Language"),
|
86 |
gr.Dropdown(choices=language_options, label="Target Language"),
|
87 |
gr.Dropdown(choices=["base", "small", "medium", "large", "large-v2", "large-v3"], label="Model Size"),
|
88 |
-
gr.Checkbox(label="
|
89 |
gr.TextArea(label="Modified Transcript (if allowed)")
|
90 |
],
|
91 |
-
outputs=gr.
|
92 |
title="Video Transcription and Translation Tool",
|
93 |
description="Transcribe or translate your video content. Optionally, edit the transcription before adding hard subtitles."
|
94 |
)
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
app.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
from faster_whisper import WhisperModel
|
3 |
import logging
|
|
|
|
|
|
|
4 |
from transformers import MarianMTModel, MarianTokenizer
|
5 |
import pandas as pd
|
|
|
6 |
import requests
|
7 |
|
8 |
# Configure logging for debugging purposes
|
|
|
18 |
# Prepare language options for the dropdown
|
19 |
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']}") for index, row in df.iterrows()]
|
20 |
|
21 |
+
def transcribe_and_optionally_translate(audio_file, source_language, target_language, model_size, change_transcript):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# Transcription
|
23 |
+
device = "cpu" # Use "cuda" for GPU
|
24 |
+
compute_type = "int8" # Use "float16" or "int8" for GPU, "int8" for CPU
|
25 |
model = WhisperModel(model_size, device=device, compute_type=compute_type)
|
26 |
segments, _ = model.transcribe(audio_file)
|
27 |
transcription = " ".join([segment.text for segment in segments])
|
28 |
|
29 |
+
if change_transcript:
|
30 |
+
# Assume user will modify the transcript manually before translation
|
31 |
+
return transcription, True
|
32 |
+
|
33 |
# Translation
|
34 |
if source_language != target_language:
|
35 |
model_name = f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
|
|
38 |
translated = model.generate(**tokenizer(transcription, return_tensors="pt", padding=True, truncation=True, max_length=512))
|
39 |
transcription = tokenizer.decode(translated[0], skip_special_tokens=True)
|
40 |
|
41 |
+
return transcription, False
|
42 |
|
43 |
def add_hard_subtitle_to_video(input_video, transcript):
|
44 |
"""Add hard subtitles to video."""
|
|
|
51 |
|
52 |
return output_video_path
|
53 |
|
54 |
+
def process_video(video, source_language, target_language, model_size='base', change_transcript=False, modified_transcript=None):
|
55 |
+
audio_file = video # Directly use the video file as the audio input
|
56 |
+
|
57 |
+
transcript, can_modify = transcribe_and_optionally_translate(audio_file, source_language, target_language, model_size, change_transcript)
|
58 |
|
59 |
if can_modify and modified_transcript:
|
60 |
+
# Use the modified transcript for translation if allowed and provided
|
61 |
+
transcript = modified_transcript
|
62 |
+
# Perform translation here if necessary (similar to the previous step)
|
63 |
|
|
|
64 |
output_video = add_hard_subtitle_to_video(video, transcript)
|
65 |
return output_video
|
66 |
|
|
|
68 |
app = gr.Interface(
|
69 |
fn=process_video,
|
70 |
inputs=[
|
71 |
+
gr.Video(label="Upload Video", type="filepath"),
|
72 |
gr.Dropdown(choices=language_options, label="Source Language"),
|
73 |
gr.Dropdown(choices=language_options, label="Target Language"),
|
74 |
gr.Dropdown(choices=["base", "small", "medium", "large", "large-v2", "large-v3"], label="Model Size"),
|
75 |
+
gr.Checkbox(label="Change Transcript before Translation?", value=False),
|
76 |
gr.TextArea(label="Modified Transcript (if allowed)")
|
77 |
],
|
78 |
+
outputs=gr.Text(label="Transcript"),
|
79 |
title="Video Transcription and Translation Tool",
|
80 |
description="Transcribe or translate your video content. Optionally, edit the transcription before adding hard subtitles."
|
81 |
)
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
app.launch()
|
85 |
+
|