Spaces:
Sleeping
Sleeping
File size: 1,361 Bytes
c60e096 7752cd2 c60e096 7752cd2 c60e096 7752cd2 3a81031 af1960a 7752cd2 af1960a c60e096 7752cd2 3a81031 7752cd2 3a81031 7752cd2 c60e096 7752cd2 c60e096 e508c61 c60e096 3a81031 c60e096 7752cd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import gradio as gr
from faster_whisper import WhisperModel
import logging
# Configure logging for debugging purposes
logging.basicConfig()
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
# Initialize the Whisper model with your desired configuration
model_size = "small" # Choose the model size
device = "cpu" # GPU : cuda CPU : cpu
compute_type = "int8" # GPU : float16 or int8 - CPU : int8
model = WhisperModel(model_size, device=device, compute_type=compute_type)
def transcribe(audio_file):
# Transcribe the audio file without word-level timestamps
segments, _ = model.transcribe(audio_file)
# Format and gather transcription with segment timestamps
transcription_with_timestamps = [
f"[{segment.start:.2f}s - {segment.end:.2f}s] {segment.text}" for segment in segments
]
return "\n".join(transcription_with_timestamps)
# Define the Gradio interface
iface = gr.Interface(fn=transcribe,
inputs=gr.Audio(sources="upload", type="filepath", label="Upload Audio"),
outputs="text",
title="Whisper Transcription with Line-by-Line Timestamps",
description="Upload an audio file to get transcription with line-by-line timestamps using Faster Whisper.")
# Launch the app
if __name__ == "__main__":
iface.launch()
|