Whisper-API / app.py
Lenylvt's picture
Update app.py
1a8b6da verified
raw
history blame
878 Bytes
import gradio as gr
import whisper
# Load the Whisper model
model = whisper.load_model("base")
def transcribe(audio_file):
# Process the audio file
audio = whisper.load_audio(audio_file.name)
audio = whisper.pad_or_trim(audio)
# Make predictions
mel = whisper.log_mel_spectrogram(audio).to(model.device)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(model, mel, options)
# Return the transcription
return result.text
# Create the Gradio interface
iface = gr.Interface(fn=transcribe,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs="text",
title="Whisper Transcription",
description="Upload an audio file to transcribe it using OpenAI's Whisper model.")
# Launch the app
if __name__ == "__main__":
iface.launch()