import gradio as gr from openai_whisper import whisper # Load the Whisper model model = whisper.load_model("base") def transcribe(audio_file): # Process the audio file audio = whisper.load_audio(audio_file.name) audio = whisper.pad_or_trim(audio) # Make predictions mel = whisper.log_mel_spectrogram(audio).to(model.device) options = whisper.DecodingOptions(fp16=False) result = whisper.decode(model, mel, options) # Return the transcription return result.text # Create the Gradio interface iface = gr.Interface(fn=transcribe, inputs=gr.Audio(source="upload", type="filepath"), outputs="text", title="Whisper Transcription", description="Upload an audio file to transcribe it using OpenAI's Whisper model.") # Launch the app if __name__ == "__main__": iface.launch()