Spaces:
Runtime error
Runtime error
import gradio as gr | |
from setup_database import get_document_store, add_data | |
from setup_modules import create_retriever, create_readers_and_pipeline, text_reader_types, table_reader_types | |
document_index = "document" | |
document_store = get_document_store(document_index) | |
filenames = ["processed_website_tables","processed_website_text","processed_schedule_tables"] | |
document_store, data = add_data(filenames, document_store, document_index) | |
document_store, retriever = create_retriever(document_store) | |
text_reader_type = text_reader_types['deberta-large'] | |
table_reader_type = table_reader_types['tapas'] | |
pipeline = create_readers_and_pipeline(retriever, text_reader_type, table_reader_type, True, True) | |
title = "Welcome to the BounWiki: The Question Answering Enginge for Bogazici Students!" | |
head = ''' | |
This engine uses information from the Bogazici University Website to answer questions about different areas such as: | |
- Semester Dates (e.g. Registration Period, Add/Dropp Period...) | |
- Campus buildings and their locations | |
- General Uni Information, like Busses from Uni, Taxi-Numbers | |
- Schedule Information for all courses | |
It returns the top | |
''' | |
article = ''' | |
# How does this work? | |
This App uses an "MPNet" sentence-transformer to encode information from the website into an embedding space. | |
When faced with a query, the semantically most similar document is retrieved. | |
A language model ("deberta-large" here) extracts the answer to the original question from this document and returns it to the interface | |
''' | |
examples = [ | |
["When is the add/dropp period?"], | |
["What does it mean if instructor consent is required?"], | |
["Where is the english preparatory unit located?"], | |
] | |
label = gr.outputs.Label(num_top_classes=3) | |
def predict(input): | |
prediction = pipeline.run( | |
query=input, params={"top_k": 3} | |
) | |
return {a.answer: float(a.score) for a in prediction["answers"]} | |
interface = gr.Interface(fn=predict, inputs=gr.Textbox(lines=5, max_lines=6, label="Input Text"), outputs=label, title=title, description=head, article=article, examples=examples) | |
interface.launch(server_name="0.0.0.0", server_port=8080) |