from multiprocessing import process import pandas as pd import datetime as dt import http.client import json import urllib.parse import os from pymongo import MongoClient from concurrent.futures import ThreadPoolExecutor, as_completed from dotenv import load_dotenv load_dotenv() mongodb_conn = os.getenv('MONGODB_CONNECTION_STRING') # Global variables to keep track of searched job titles and cities searched_jobs = set() searched_cities = set() def google_job_search(job_title, city_state, start=0): ''' job_title(str): "Data Scientist", "Data Analyst" city_state(str): "Denver, CO" ''' query = f"{job_title} {city_state}" params = { "api_key": os.getenv('WEBSCRAPING_API_KEY'), "engine": "google_jobs", "q": query, "hl": "en", "google_domain": "google.com", # "start": start, # "chips": f"date_posted:{post_age}", } query_string = urllib.parse.urlencode(params, quote_via=urllib.parse.quote) conn = http.client.HTTPSConnection("serpapi.webscrapingapi.com") try: conn.request("GET", f"/v1?{query_string}") print(f"GET /v1?{query_string}") res = conn.getresponse() try: data = res.read() finally: res.close() finally: conn.close() try: json_data = json.loads(data.decode("utf-8")) jobs_results = json_data['google_jobs_results'] return jobs_results except (KeyError, json.JSONDecodeError) as e: print(f"Error occurred for search: {job_title} in {city_state}") print(f"Error message: {str(e)}") print(f"Data: {data}") return None def mongo_dump(jobs_results, collection_name): client = MongoClient(mongodb_conn) db = client.job_search_db collection = db[collection_name] for job in jobs_results: job['retrieve_date'] = dt.datetime.today().strftime('%Y-%m-%d') collection.insert_one(job) print(f"Dumped {len(jobs_results)} documents to MongoDB collection {collection_name}") def process_batch(job, city_state, start=0): global searched_jobs, searched_cities # Check if the job title and city have already been searched if (job, city_state) in searched_jobs: print(f'Skipping already searched job: {job} in {city_state}') return jobs_results = google_job_search(job, city_state, start) if jobs_results is not None: print(f'City: {city_state} Job: {job} Start: {start}') mongo_dump(jobs_results, 'sf_bay_test_jobs') # Add the job title and city to the searched sets searched_jobs.add((job, city_state)) searched_cities.add(city_state) def main(job_list, city_state_list): for job in job_list: for city_state in city_state_list: output = process_batch(job, city_state) if __name__ == "__main__": job_list = ["Data Scientist", "Machine Learning Engineer", "AI Gen Engineer", "ML Ops"] city_state_list = ["Atlanta, GA", "Austin, TX", "Boston, MA", "Chicago, IL", "Denver CO", "Dallas-Ft. Worth, TX", "Los Angeles, CA", "New York City NY", "San Francisco, CA", "Seattle, WA", "Palo Alto CA", "Mountain View CA", "San Jose, CA"] simple_city_state_list: list[str] = ["Palo Alto CA", "San Francisco CA", "Mountain View CA"] main(job_list, simple_city_state_list)