Spaces:
Sleeping
Sleeping
import yfinance as yf | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from datetime import datetime | |
from PIL import Image | |
import io | |
import gradio as gr | |
from cachetools import cached, TTLCache | |
import cProfile | |
import pstats | |
# Global fontsize variable | |
FONT_SIZE = 32 | |
# Company ticker mapping | |
COMPANY_TICKERS = { | |
'Union Pacific': 'UNP', | |
'Canadian Pacific KC': 'CP', | |
'FedEx': 'FDX', | |
'Autozone': 'AZO', | |
'XPO Logistics': 'XPO', | |
'JB Hunt Transport': 'JBHT', | |
'Old Dominion FL': 'ODFL', | |
'Broadcom Inc':'AVGO', | |
'Genuine Parts Co': 'GPC', | |
'C.H. Robinson': 'CHRW', | |
'Expeditors Int': 'EXPD', | |
'Landstar System': 'LSTR', | |
'Saia': 'SAIA', | |
'Knight-Swift Transportation': 'KNX', | |
'Schneider National': 'SNDR', | |
'Ryder System': 'R', | |
'Tesla': 'TSLA', | |
'Amazon': 'AMZN', | |
'A.O. Smith': 'AOS', | |
'Acushnet Holdings': 'GOLF', | |
'Allison Transmission': 'ALSN', | |
'AMETEK': 'AME', | |
'AMN Healthcare': 'AMN', | |
'Analog Devices': 'ADI', | |
'Ansys': 'ANSS', | |
'AptarGroup': 'ATR', | |
'Aramark': 'ARMK', | |
'Snap-On': 'SNA', | |
'ArcBest': 'ARCB', | |
'Arch Capital Group': 'ACGL', | |
'Atlassian': 'TEAM', | |
'AutoNation': 'AN', | |
'Avnet': 'AVT', | |
'Brookfield Renewable Partners': 'BEP', | |
'Cadence Bank': 'CADE', | |
'CACI International': 'CACI', | |
'California Water Service': 'CWT', | |
'Cambrex': 'CBM', | |
'Capri Holdings': 'CPRI', | |
'Carlisle Companies': 'CSL', | |
'Catalent': 'CTLT', | |
'CDK Global': 'CDK', | |
'Celanese': 'CE', | |
'Celsius Holdings': 'CELH', | |
'Centene': 'CNC', | |
'Central Garden & Pet': 'CENT', | |
'Chart Industries': 'GTLS', | |
'Chemed': 'CHE', | |
'Cheniere Energy': 'LNG', | |
'Chesapeake Energy': 'CHK', | |
'Church & Dwight': 'CHD', | |
'Cimarex Energy': 'XEC', | |
'Cincinnati Financial': 'CINF', | |
'Cinemark': 'CNK', | |
'Cirrus Logic': 'CRUS', | |
'Cloudflare': 'NET', | |
'Coca-Cola Consolidated': 'COKE', | |
'Comerica': 'CMA', | |
'Commercial Metals': 'CMC', | |
'CommScope': 'COMM', | |
'Community Health Systems': 'CYH', | |
'Compass Minerals': 'CMP', | |
'Comstock Resources': 'CRK', | |
'Conagra Brands': 'CAG', | |
'Consolidated Communications': 'CNSL', | |
'Cooper-Standard': 'CPS', | |
'Copart': 'CPRT', | |
'CoreLogic': 'CLGX', | |
'Core-Mark': 'CORE', | |
'Cousins Properties': 'CUZ', | |
'Covenant Logistics': 'CVLG', | |
'Cree': 'CREE', | |
'Cullen/Frost Bankers': 'CFR', | |
'Curtiss-Wright': 'CW', | |
'CyrusOne': 'CONE', | |
'D.R. Horton': 'DHI', | |
'Daseke': 'DSKE', | |
'Deckers Outdoor': 'DECK', | |
'Del Taco Restaurants': 'TACO', | |
'Deluxe': 'DLX', | |
'Dentsply Sirona': 'XRAY', | |
'Dorman Products': 'DORM', | |
'Douglas Emmett': 'DEI', | |
'Dover': 'DOV', | |
'DuPont de Nemours': 'DD', | |
'Dycom Industries': 'DY', | |
'Eagle Materials': 'EXP', | |
'East West Bancorp': 'EWBC', | |
'Eaton Vance': 'EV', | |
'Echo Global Logistics': 'ECHO', | |
'Ecolab': 'ECL', | |
'Edgewell Personal Care': 'EPC', | |
'eHealth': 'EHTH', | |
'Elanco Animal Health': 'ELAN', | |
'Elbit Systems': 'ESLT', | |
'EMCOR Group': 'EME', | |
'Encompass Health': 'EHC', | |
'Encore Capital Group': 'ECPG', | |
'Endo International': 'ENDP', | |
'Entegris': 'ENTG', | |
'Envestnet': 'ENV', | |
'EPAM Systems': 'EPAM', | |
'EPR Properties': 'EPR', | |
'EQT': 'EQT', | |
'Equitrans Midstream': 'ETRN', | |
'Everbridge': 'EVBG', | |
'Evergy': 'EVRG', | |
'Eversource Energy': 'ES', | |
'Exelixis': 'EXEL', | |
'Exponent': 'EXPO', | |
'Express': 'EXPR', | |
'Exterran': 'EXTN', | |
'Exxon Mobil': 'XOM', | |
'FactSet': 'FDS', | |
'Fair Isaac': 'FICO', | |
'Federal Realty': 'FRT', | |
'Federated Hermes': 'FHI', | |
'Ferro': 'FOE', | |
'First American': 'FAF', | |
'Fortune Brands Home & Security': 'FBHS', | |
'Franklin Electric': 'FELE', | |
'Fresenius Medical Care': 'FMS', | |
'Fresh Del Monte Produce': 'FDP', | |
'Fulton Financial': 'FULT', | |
'Gartner': 'IT', | |
'Genpact': 'G', | |
'Gibraltar Industries': 'ROCK', | |
'Gilead Sciences': 'GILD', | |
'Glacier Bancorp': 'GBCI', | |
'Global Payments': 'GPN', | |
'Globant': 'GLOB', | |
'Graphic Packaging Holding': 'GPK', | |
'HD Supply': 'HDS', | |
'Heico': 'HEI', | |
'Helmerich & Payne': 'HP', | |
'Henry Schein': 'HSIC', | |
'Hess': 'HES', | |
'Oracle': 'ORCL', | |
'Uber': 'UBER', | |
'Werner Enterprises': 'WERN' | |
} | |
# Cache with 1-day TTL | |
cache = TTLCache(maxsize=100, ttl=86400) | |
def fetch_historical_data(ticker, start_date, end_date): | |
"""Fetch historical stock data and market cap from Yahoo Finance.""" | |
try: | |
data = yf.download(ticker, start=start_date, end=end_date) | |
if data.empty: | |
raise ValueError(f"No data found for ticker {ticker}") | |
info = yf.Ticker(ticker).info | |
market_cap = info.get('marketCap', 'N/A') | |
if market_cap != 'N/A': | |
market_cap = market_cap / 1e9 # Convert to billions | |
return data, market_cap | |
except Exception as e: | |
print(f"Error fetching data for {ticker}: {e}") | |
return None, 'N/A' | |
def plot_to_image(plt, title, market_cap): | |
"""Convert plot to a PIL Image object.""" | |
plt.title(title, fontsize=FONT_SIZE + 1, pad=40) | |
plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold') | |
plt.legend(fontsize=FONT_SIZE) | |
plt.xlabel('Date', fontsize=FONT_SIZE) | |
plt.ylabel('', fontsize=FONT_SIZE) | |
plt.grid(True) | |
plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE) | |
plt.yticks(fontsize=FONT_SIZE) | |
plt.tight_layout(rect=[0, 0, 1, 0.88]) | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', dpi=400) | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
def plot_indicator(data, company_name, ticker, indicator, market_cap): | |
"""Plot selected technical indicator for a single company.""" | |
plt.figure(figsize=(16, 10)) | |
if indicator == "SMA": | |
sma_55 = data['Close'].rolling(window=55).mean() | |
sma_100 = data['Close'].rolling(window=100).mean() # 100-day SMA | |
sma_200 = data['Close'].rolling(window=252).mean() | |
plt.plot(data.index, data['Close'], label='Close') | |
plt.plot(data.index, sma_55, label='55-day SMA') | |
plt.plot(data.index, sma_100, label='100-day SMA') # Plot 100-day SMA | |
plt.plot(data.index, sma_200, label='252-day SMA') | |
plt.ylabel('Price', fontsize=FONT_SIZE) | |
elif indicator == "MACD": | |
exp1 = data['Close'].ewm(span=12, adjust=False).mean() | |
exp2 = data['Close'].ewm(span=26, adjust=False).mean() | |
macd = exp1 - exp2 | |
signal = macd.ewm(span=9, adjust=False).mean() | |
plt.plot(data.index, macd, label='MACD') | |
plt.plot(data.index, signal, label='Signal Line') | |
plt.bar(data.index, macd - signal, label='MACD Histogram') | |
plt.ylabel('MACD', fontsize=FONT_SIZE) | |
return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap) | |
def plot_indicators(company_names, indicator_types): | |
"""Plot the selected indicators for the selected companies.""" | |
images = [] | |
total_market_cap = 0 | |
if len(company_names) > 7: | |
return None, "You can select up to 7 companies at the same time.", None | |
if len(company_names) > 1 and len(indicator_types) > 1: | |
return None, "You can only select one indicator when selecting multiple companies.", None | |
with ThreadPoolExecutor() as executor: | |
future_to_company = { | |
executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator) | |
for company in company_names | |
for indicator in indicator_types | |
} | |
for future in as_completed(future_to_company): | |
company, indicator = future_to_company[future] | |
ticker = COMPANY_TICKERS[company] | |
data, market_cap = future.result() | |
if data is None: | |
continue | |
images.append(plot_indicator(data, company, ticker, indicator, market_cap)) | |
if market_cap != 'N/A': | |
total_market_cap += market_cap | |
return images, "", total_market_cap | |
def select_all_indicators(select_all): | |
"""Select or deselect all indicators based on the select_all flag.""" | |
indicators = ["SMA", "MACD"] | |
return indicators if select_all else [] | |
def launch_gradio_app(): | |
"""Launch the Gradio app for interactive plotting.""" | |
company_choices = list(COMPANY_TICKERS.keys()) | |
indicators = ["SMA", "MACD"] | |
def fetch_and_plot(company_names, indicator_types): | |
images, error_message, total_market_cap = plot_indicators(company_names, indicator_types) | |
if error_message: | |
return [None] * len(indicator_types), error_message, None | |
return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A" | |
with gr.Blocks() as demo: | |
company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies") | |
select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True) | |
indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators") | |
select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup) | |
plot_gallery = gr.Gallery(label="Indicator Plots") | |
error_markdown = gr.Markdown() | |
market_cap_text = gr.Markdown() | |
gr.Interface( | |
fetch_and_plot, | |
[company_checkboxgroup, indicator_types_checkboxgroup], | |
[plot_gallery, error_markdown, market_cap_text] | |
) | |
demo.launch() | |
def profile_code(): | |
"""Profile the main functions to find speed bottlenecks.""" | |
profiler = cProfile.Profile() | |
profiler.enable() | |
launch_gradio_app() | |
profiler.disable() | |
stats = pstats.Stats(profiler).sort_stats('cumtime') | |
stats.print_stats(10) | |
if __name__ == "__main__": | |
profile_code() | |