active-equities / app.py
LeonceNsh's picture
Update app.py
7e96b6e verified
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats
# Global fontsize variable
FONT_SIZE = 32
# Company ticker mapping
COMPANY_TICKERS = {
'Union Pacific': 'UNP',
'Canadian Pacific KC': 'CP',
'FedEx': 'FDX',
'Autozone': 'AZO',
'XPO Logistics': 'XPO',
'JB Hunt Transport': 'JBHT',
'Old Dominion FL': 'ODFL',
'Broadcom Inc':'AVGO',
'Genuine Parts Co': 'GPC',
'C.H. Robinson': 'CHRW',
'Expeditors Int': 'EXPD',
'Landstar System': 'LSTR',
'Saia': 'SAIA',
'Knight-Swift Transportation': 'KNX',
'Schneider National': 'SNDR',
'Ryder System': 'R',
'Tesla': 'TSLA',
'Amazon': 'AMZN',
'A.O. Smith': 'AOS',
'Acushnet Holdings': 'GOLF',
'Allison Transmission': 'ALSN',
'AMETEK': 'AME',
'AMN Healthcare': 'AMN',
'Analog Devices': 'ADI',
'Ansys': 'ANSS',
'AptarGroup': 'ATR',
'Aramark': 'ARMK',
'Snap-On': 'SNA',
'ArcBest': 'ARCB',
'Arch Capital Group': 'ACGL',
'Atlassian': 'TEAM',
'AutoNation': 'AN',
'Avnet': 'AVT',
'Brookfield Renewable Partners': 'BEP',
'Cadence Bank': 'CADE',
'CACI International': 'CACI',
'California Water Service': 'CWT',
'Cambrex': 'CBM',
'Capri Holdings': 'CPRI',
'Carlisle Companies': 'CSL',
'Catalent': 'CTLT',
'CDK Global': 'CDK',
'Celanese': 'CE',
'Celsius Holdings': 'CELH',
'Centene': 'CNC',
'Central Garden & Pet': 'CENT',
'Chart Industries': 'GTLS',
'Chemed': 'CHE',
'Cheniere Energy': 'LNG',
'Chesapeake Energy': 'CHK',
'Church & Dwight': 'CHD',
'Cimarex Energy': 'XEC',
'Cincinnati Financial': 'CINF',
'Cinemark': 'CNK',
'Cirrus Logic': 'CRUS',
'Cloudflare': 'NET',
'Coca-Cola Consolidated': 'COKE',
'Comerica': 'CMA',
'Commercial Metals': 'CMC',
'CommScope': 'COMM',
'Community Health Systems': 'CYH',
'Compass Minerals': 'CMP',
'Comstock Resources': 'CRK',
'Conagra Brands': 'CAG',
'Consolidated Communications': 'CNSL',
'Cooper-Standard': 'CPS',
'Copart': 'CPRT',
'CoreLogic': 'CLGX',
'Core-Mark': 'CORE',
'Cousins Properties': 'CUZ',
'Covenant Logistics': 'CVLG',
'Cree': 'CREE',
'Cullen/Frost Bankers': 'CFR',
'Curtiss-Wright': 'CW',
'CyrusOne': 'CONE',
'D.R. Horton': 'DHI',
'Daseke': 'DSKE',
'Deckers Outdoor': 'DECK',
'Del Taco Restaurants': 'TACO',
'Deluxe': 'DLX',
'Dentsply Sirona': 'XRAY',
'Dorman Products': 'DORM',
'Douglas Emmett': 'DEI',
'Dover': 'DOV',
'DuPont de Nemours': 'DD',
'Dycom Industries': 'DY',
'Eagle Materials': 'EXP',
'East West Bancorp': 'EWBC',
'Eaton Vance': 'EV',
'Echo Global Logistics': 'ECHO',
'Ecolab': 'ECL',
'Edgewell Personal Care': 'EPC',
'eHealth': 'EHTH',
'Elanco Animal Health': 'ELAN',
'Elbit Systems': 'ESLT',
'EMCOR Group': 'EME',
'Encompass Health': 'EHC',
'Encore Capital Group': 'ECPG',
'Endo International': 'ENDP',
'Entegris': 'ENTG',
'Envestnet': 'ENV',
'EPAM Systems': 'EPAM',
'EPR Properties': 'EPR',
'EQT': 'EQT',
'Equitrans Midstream': 'ETRN',
'Everbridge': 'EVBG',
'Evergy': 'EVRG',
'Eversource Energy': 'ES',
'Exelixis': 'EXEL',
'Exponent': 'EXPO',
'Express': 'EXPR',
'Exterran': 'EXTN',
'Exxon Mobil': 'XOM',
'FactSet': 'FDS',
'Fair Isaac': 'FICO',
'Federal Realty': 'FRT',
'Federated Hermes': 'FHI',
'Ferro': 'FOE',
'First American': 'FAF',
'Fortune Brands Home & Security': 'FBHS',
'Franklin Electric': 'FELE',
'Fresenius Medical Care': 'FMS',
'Fresh Del Monte Produce': 'FDP',
'Fulton Financial': 'FULT',
'Gartner': 'IT',
'Genpact': 'G',
'Gibraltar Industries': 'ROCK',
'Gilead Sciences': 'GILD',
'Glacier Bancorp': 'GBCI',
'Global Payments': 'GPN',
'Globant': 'GLOB',
'Graphic Packaging Holding': 'GPK',
'HD Supply': 'HDS',
'Heico': 'HEI',
'Helmerich & Payne': 'HP',
'Henry Schein': 'HSIC',
'Hess': 'HES',
'Oracle': 'ORCL',
'Uber': 'UBER',
'Werner Enterprises': 'WERN'
}
# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)
@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
"""Fetch historical stock data and market cap from Yahoo Finance."""
try:
data = yf.download(ticker, start=start_date, end=end_date)
if data.empty:
raise ValueError(f"No data found for ticker {ticker}")
info = yf.Ticker(ticker).info
market_cap = info.get('marketCap', 'N/A')
if market_cap != 'N/A':
market_cap = market_cap / 1e9 # Convert to billions
return data, market_cap
except Exception as e:
print(f"Error fetching data for {ticker}: {e}")
return None, 'N/A'
def plot_to_image(plt, title, market_cap):
"""Convert plot to a PIL Image object."""
plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
plt.legend(fontsize=FONT_SIZE)
plt.xlabel('Date', fontsize=FONT_SIZE)
plt.ylabel('', fontsize=FONT_SIZE)
plt.grid(True)
plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
plt.yticks(fontsize=FONT_SIZE)
plt.tight_layout(rect=[0, 0, 1, 0.88])
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=400)
plt.close()
buf.seek(0)
return Image.open(buf)
def plot_indicator(data, company_name, ticker, indicator, market_cap):
"""Plot selected technical indicator for a single company."""
plt.figure(figsize=(16, 10))
if indicator == "SMA":
sma_55 = data['Close'].rolling(window=55).mean()
sma_100 = data['Close'].rolling(window=100).mean() # 100-day SMA
sma_200 = data['Close'].rolling(window=252).mean()
plt.plot(data.index, data['Close'], label='Close')
plt.plot(data.index, sma_55, label='55-day SMA')
plt.plot(data.index, sma_100, label='100-day SMA') # Plot 100-day SMA
plt.plot(data.index, sma_200, label='252-day SMA')
plt.ylabel('Price', fontsize=FONT_SIZE)
elif indicator == "MACD":
exp1 = data['Close'].ewm(span=12, adjust=False).mean()
exp2 = data['Close'].ewm(span=26, adjust=False).mean()
macd = exp1 - exp2
signal = macd.ewm(span=9, adjust=False).mean()
plt.plot(data.index, macd, label='MACD')
plt.plot(data.index, signal, label='Signal Line')
plt.bar(data.index, macd - signal, label='MACD Histogram')
plt.ylabel('MACD', fontsize=FONT_SIZE)
return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)
def plot_indicators(company_names, indicator_types):
"""Plot the selected indicators for the selected companies."""
images = []
total_market_cap = 0
if len(company_names) > 7:
return None, "You can select up to 7 companies at the same time.", None
if len(company_names) > 1 and len(indicator_types) > 1:
return None, "You can only select one indicator when selecting multiple companies.", None
with ThreadPoolExecutor() as executor:
future_to_company = {
executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
for company in company_names
for indicator in indicator_types
}
for future in as_completed(future_to_company):
company, indicator = future_to_company[future]
ticker = COMPANY_TICKERS[company]
data, market_cap = future.result()
if data is None:
continue
images.append(plot_indicator(data, company, ticker, indicator, market_cap))
if market_cap != 'N/A':
total_market_cap += market_cap
return images, "", total_market_cap
def select_all_indicators(select_all):
"""Select or deselect all indicators based on the select_all flag."""
indicators = ["SMA", "MACD"]
return indicators if select_all else []
def launch_gradio_app():
"""Launch the Gradio app for interactive plotting."""
company_choices = list(COMPANY_TICKERS.keys())
indicators = ["SMA", "MACD"]
def fetch_and_plot(company_names, indicator_types):
images, error_message, total_market_cap = plot_indicators(company_names, indicator_types)
if error_message:
return [None] * len(indicator_types), error_message, None
return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A"
with gr.Blocks() as demo:
company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
plot_gallery = gr.Gallery(label="Indicator Plots")
error_markdown = gr.Markdown()
market_cap_text = gr.Markdown()
gr.Interface(
fetch_and_plot,
[company_checkboxgroup, indicator_types_checkboxgroup],
[plot_gallery, error_markdown, market_cap_text]
)
demo.launch()
def profile_code():
"""Profile the main functions to find speed bottlenecks."""
profiler = cProfile.Profile()
profiler.enable()
launch_gradio_app()
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumtime')
stats.print_stats(10)
if __name__ == "__main__":
profile_code()