import yfinance as yf import matplotlib.pyplot as plt import numpy as np from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import datetime from PIL import Image import io import gradio as gr from cachetools import cached, TTLCache import cProfile import pstats # Global fontsize variable FONT_SIZE = 32 # Company ticker mapping COMPANY_TICKERS = { 'Union Pacific': 'UNP', 'Canadian Pacific KC': 'CP', 'FedEx': 'FDX', 'Autozone': 'AZO', 'XPO Logistics': 'XPO', 'JB Hunt Transport': 'JBHT', 'Old Dominion FL': 'ODFL', 'Broadcom Inc':'AVGO', 'Genuine Parts Co': 'GPC', 'C.H. Robinson': 'CHRW', 'Expeditors Int': 'EXPD', 'Landstar System': 'LSTR', 'Saia': 'SAIA', 'Knight-Swift Transportation': 'KNX', 'Schneider National': 'SNDR', 'Ryder System': 'R', 'Tesla': 'TSLA', 'Amazon': 'AMZN', 'A.O. Smith': 'AOS', 'Acushnet Holdings': 'GOLF', 'Allison Transmission': 'ALSN', 'AMETEK': 'AME', 'AMN Healthcare': 'AMN', 'Analog Devices': 'ADI', 'Ansys': 'ANSS', 'AptarGroup': 'ATR', 'Aramark': 'ARMK', 'Snap-On': 'SNA', 'ArcBest': 'ARCB', 'Arch Capital Group': 'ACGL', 'Atlassian': 'TEAM', 'AutoNation': 'AN', 'Avnet': 'AVT', 'Brookfield Renewable Partners': 'BEP', 'Cadence Bank': 'CADE', 'CACI International': 'CACI', 'California Water Service': 'CWT', 'Cambrex': 'CBM', 'Capri Holdings': 'CPRI', 'Carlisle Companies': 'CSL', 'Catalent': 'CTLT', 'CDK Global': 'CDK', 'Celanese': 'CE', 'Celsius Holdings': 'CELH', 'Centene': 'CNC', 'Central Garden & Pet': 'CENT', 'Chart Industries': 'GTLS', 'Chemed': 'CHE', 'Cheniere Energy': 'LNG', 'Chesapeake Energy': 'CHK', 'Church & Dwight': 'CHD', 'Cimarex Energy': 'XEC', 'Cincinnati Financial': 'CINF', 'Cinemark': 'CNK', 'Cirrus Logic': 'CRUS', 'Cloudflare': 'NET', 'Coca-Cola Consolidated': 'COKE', 'Comerica': 'CMA', 'Commercial Metals': 'CMC', 'CommScope': 'COMM', 'Community Health Systems': 'CYH', 'Compass Minerals': 'CMP', 'Comstock Resources': 'CRK', 'Conagra Brands': 'CAG', 'Consolidated Communications': 'CNSL', 'Cooper-Standard': 'CPS', 'Copart': 'CPRT', 'CoreLogic': 'CLGX', 'Core-Mark': 'CORE', 'Cousins Properties': 'CUZ', 'Covenant Logistics': 'CVLG', 'Cree': 'CREE', 'Cullen/Frost Bankers': 'CFR', 'Curtiss-Wright': 'CW', 'CyrusOne': 'CONE', 'D.R. Horton': 'DHI', 'Daseke': 'DSKE', 'Deckers Outdoor': 'DECK', 'Del Taco Restaurants': 'TACO', 'Deluxe': 'DLX', 'Dentsply Sirona': 'XRAY', 'Dorman Products': 'DORM', 'Douglas Emmett': 'DEI', 'Dover': 'DOV', 'DuPont de Nemours': 'DD', 'Dycom Industries': 'DY', 'Eagle Materials': 'EXP', 'East West Bancorp': 'EWBC', 'Eaton Vance': 'EV', 'Echo Global Logistics': 'ECHO', 'Ecolab': 'ECL', 'Edgewell Personal Care': 'EPC', 'eHealth': 'EHTH', 'Elanco Animal Health': 'ELAN', 'Elbit Systems': 'ESLT', 'EMCOR Group': 'EME', 'Encompass Health': 'EHC', 'Encore Capital Group': 'ECPG', 'Endo International': 'ENDP', 'Entegris': 'ENTG', 'Envestnet': 'ENV', 'EPAM Systems': 'EPAM', 'EPR Properties': 'EPR', 'EQT': 'EQT', 'Equitrans Midstream': 'ETRN', 'Everbridge': 'EVBG', 'Evergy': 'EVRG', 'Eversource Energy': 'ES', 'Exelixis': 'EXEL', 'Exponent': 'EXPO', 'Express': 'EXPR', 'Exterran': 'EXTN', 'Exxon Mobil': 'XOM', 'FactSet': 'FDS', 'Fair Isaac': 'FICO', 'Federal Realty': 'FRT', 'Federated Hermes': 'FHI', 'Ferro': 'FOE', 'First American': 'FAF', 'Fortune Brands Home & Security': 'FBHS', 'Franklin Electric': 'FELE', 'Fresenius Medical Care': 'FMS', 'Fresh Del Monte Produce': 'FDP', 'Fulton Financial': 'FULT', 'Gartner': 'IT', 'Genpact': 'G', 'Gibraltar Industries': 'ROCK', 'Gilead Sciences': 'GILD', 'Glacier Bancorp': 'GBCI', 'Global Payments': 'GPN', 'Globant': 'GLOB', 'Graphic Packaging Holding': 'GPK', 'HD Supply': 'HDS', 'Heico': 'HEI', 'Helmerich & Payne': 'HP', 'Henry Schein': 'HSIC', 'Hess': 'HES', 'Oracle': 'ORCL', 'Uber': 'UBER', 'Werner Enterprises': 'WERN' } # Cache with 1-day TTL cache = TTLCache(maxsize=100, ttl=86400) @cached(cache) def fetch_historical_data(ticker, start_date, end_date): """Fetch historical stock data and market cap from Yahoo Finance.""" try: data = yf.download(ticker, start=start_date, end=end_date) if data.empty: raise ValueError(f"No data found for ticker {ticker}") info = yf.Ticker(ticker).info market_cap = info.get('marketCap', 'N/A') if market_cap != 'N/A': market_cap = market_cap / 1e9 # Convert to billions return data, market_cap except Exception as e: print(f"Error fetching data for {ticker}: {e}") return None, 'N/A' def plot_to_image(plt, title, market_cap): """Convert plot to a PIL Image object.""" plt.title(title, fontsize=FONT_SIZE + 1, pad=40) plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold') plt.legend(fontsize=FONT_SIZE) plt.xlabel('Date', fontsize=FONT_SIZE) plt.ylabel('', fontsize=FONT_SIZE) plt.grid(True) plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE) plt.yticks(fontsize=FONT_SIZE) plt.tight_layout(rect=[0, 0, 1, 0.88]) buf = io.BytesIO() plt.savefig(buf, format='png', dpi=400) plt.close() buf.seek(0) return Image.open(buf) def plot_indicator(data, company_name, ticker, indicator, market_cap): """Plot selected technical indicator for a single company.""" plt.figure(figsize=(16, 10)) if indicator == "SMA": sma_55 = data['Close'].rolling(window=55).mean() sma_100 = data['Close'].rolling(window=100).mean() # 100-day SMA sma_200 = data['Close'].rolling(window=252).mean() plt.plot(data.index, data['Close'], label='Close') plt.plot(data.index, sma_55, label='55-day SMA') plt.plot(data.index, sma_100, label='100-day SMA') # Plot 100-day SMA plt.plot(data.index, sma_200, label='252-day SMA') plt.ylabel('Price', fontsize=FONT_SIZE) elif indicator == "MACD": exp1 = data['Close'].ewm(span=12, adjust=False).mean() exp2 = data['Close'].ewm(span=26, adjust=False).mean() macd = exp1 - exp2 signal = macd.ewm(span=9, adjust=False).mean() plt.plot(data.index, macd, label='MACD') plt.plot(data.index, signal, label='Signal Line') plt.bar(data.index, macd - signal, label='MACD Histogram') plt.ylabel('MACD', fontsize=FONT_SIZE) return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap) def plot_indicators(company_names, indicator_types): """Plot the selected indicators for the selected companies.""" images = [] total_market_cap = 0 if len(company_names) > 7: return None, "You can select up to 7 companies at the same time.", None if len(company_names) > 1 and len(indicator_types) > 1: return None, "You can only select one indicator when selecting multiple companies.", None with ThreadPoolExecutor() as executor: future_to_company = { executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator) for company in company_names for indicator in indicator_types } for future in as_completed(future_to_company): company, indicator = future_to_company[future] ticker = COMPANY_TICKERS[company] data, market_cap = future.result() if data is None: continue images.append(plot_indicator(data, company, ticker, indicator, market_cap)) if market_cap != 'N/A': total_market_cap += market_cap return images, "", total_market_cap def select_all_indicators(select_all): """Select or deselect all indicators based on the select_all flag.""" indicators = ["SMA", "MACD"] return indicators if select_all else [] def launch_gradio_app(): """Launch the Gradio app for interactive plotting.""" company_choices = list(COMPANY_TICKERS.keys()) indicators = ["SMA", "MACD"] def fetch_and_plot(company_names, indicator_types): images, error_message, total_market_cap = plot_indicators(company_names, indicator_types) if error_message: return [None] * len(indicator_types), error_message, None return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A" with gr.Blocks() as demo: company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies") select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True) indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators") select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup) plot_gallery = gr.Gallery(label="Indicator Plots") error_markdown = gr.Markdown() market_cap_text = gr.Markdown() gr.Interface( fetch_and_plot, [company_checkboxgroup, indicator_types_checkboxgroup], [plot_gallery, error_markdown, market_cap_text] ) demo.launch() def profile_code(): """Profile the main functions to find speed bottlenecks.""" profiler = cProfile.Profile() profiler.enable() launch_gradio_app() profiler.disable() stats = pstats.Stats(profiler).sort_stats('cumtime') stats.print_stats(10) if __name__ == "__main__": profile_code()