baho / app.py
LeonceNsh's picture
Create app.py
564d637 verified
raw
history blame
6.95 kB
import json
import openai
import gradio as gr
import duckdb
from functools import lru_cache
import os
# =========================
# Configuration and Setup
# =========================
openai.api_key = os.getenv("OPENAI_API_KEY")
dataset_path = 'hsas.parquet' # Update with your Parquet file path
schema = [
{"column_name": "department_ind_agency", "column_type": "VARCHAR"},
{"column_name": "cgac", "column_type": "BIGINT"},
{"column_name": "sub_tier", "column_type": "VARCHAR"},
{"column_name": "fpds_code", "column_type": "VARCHAR"},
{"column_name": "office", "column_type": "VARCHAR"},
{"column_name": "aac_code", "column_type": "VARCHAR"},
{"column_name": "posteddate", "column_type": "VARCHAR"},
{"column_name": "type", "column_type": "VARCHAR"},
{"column_name": "basetype", "column_type": "VARCHAR"},
{"column_name": "popstreetaddress", "column_type": "VARCHAR"},
{"column_name": "popcity", "column_type": "VARCHAR"},
{"column_name": "popstate", "column_type": "VARCHAR"},
{"column_name": "popzip", "column_type": "VARCHAR"},
{"column_name": "popcountry", "column_type": "VARCHAR"},
{"column_name": "active", "column_type": "VARCHAR"},
{"column_name": "awardnumber", "column_type": "VARCHAR"},
{"column_name": "awarddate", "column_type": "VARCHAR"},
{"column_name": "award", "column_type": "DOUBLE"},
{"column_name": "awardee", "column_type": "VARCHAR"},
{"column_name": "state", "column_type": "VARCHAR"},
{"column_name": "city", "column_type": "VARCHAR"},
{"column_name": "zipcode", "column_type": "VARCHAR"},
{"column_name": "countrycode", "column_type": "VARCHAR"}
]
@lru_cache(maxsize=1)
def get_schema():
return schema
COLUMN_TYPES = {col['column_name']: col['column_type'] for col in get_schema()}
# =========================
# OpenAI API Integration
# =========================
def parse_query(nl_query):
messages = [
{"role": "system", "content": "You are an assistant that converts natural language queries into SQL queries for the 'contract_data' table."},
{"role": "user", "content": f"Schema:\n{json.dumps(schema, indent=2)}\n\nQuery:\n\"{nl_query}\"\n\nSQL:"}
]
try:
response = openai.chat.completions.create(
model="gpt-4",
messages=messages,
temperature=0,
max_tokens=150,
)
sql_query = response.choices[0].message.content.strip()
return sql_query, ""
except Exception as e:
return "", f"Error generating SQL query: {e}"
# =========================
# Database Interaction
# =========================
def execute_sql_query(sql_query):
try:
con = duckdb.connect()
con.execute(f"CREATE OR REPLACE VIEW contract_data AS SELECT * FROM '{dataset_path}'")
result_df = con.execute(sql_query).fetchdf()
con.close()
return result_df, ""
except Exception as e:
return None, f"Error executing query: {e}"
# =========================
# Gradio Application UI
# =========================
with gr.Blocks() as demo:
gr.Markdown("""
# Use Text to SQL to analyze US Government contract data
## Instructions
### 1. **Describe the data you want**: e.g., `Show awards over 1M in CA`
### 2. **Use Example Queries**: Click on any example query button below to execute.
### 3. **Generate SQL**: Or, enter your own query and click "Generate SQL" to see the SQL query.
## Example Queries
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Click on an example query:")
with gr.Row():
btn_example1 = gr.Button("Retrieve the top 15 records from contract_data where basetype is Award Notice, awardee has at least 12 characters, and popcity has more than 5 characters. Exclude the fields sub_tier, popzip, awardnumber, basetype, popstate, active, popcountry, type, countrycode, and popstreetaddress")
btn_example2 = gr.Button("Show top 10 departments by award amount")
btn_example3 = gr.Button("Execute: SELECT * from contract_data LIMIT 10;")
query_input = gr.Textbox(
label="Your Query",
placeholder='e.g., "What are the total awards over 1M in California?"',
lines=1
)
btn_generate_sql = gr.Button("Generate SQL Query")
sql_query_out = gr.Code(label="Generated SQL Query", language="sql")
btn_execute_query = gr.Button("Execute Query")
error_out = gr.Markdown("", visible=False)
with gr.Column(scale=2):
results_out = gr.Dataframe(label="Query Results", interactive=False)
with gr.Tab("Dataset Schema"):
gr.Markdown("### Dataset Schema")
schema_display = gr.JSON(label="Schema", value=get_schema())
# =========================
# Event Functions
# =========================
def generate_sql(nl_query):
sql_query, error = parse_query(nl_query)
return sql_query, error
def execute_query(sql_query):
result_df, error = execute_sql_query(sql_query)
return result_df, error
def handle_example_click(example_query):
if example_query.strip().upper().startswith("SELECT"):
sql_query = example_query
result_df, error = execute_sql_query(sql_query)
return sql_query, "", result_df, error
else:
sql_query, error = parse_query(example_query)
if error:
return sql_query, error, None, error
result_df, exec_error = execute_sql_query(sql_query)
return sql_query, exec_error, result_df, exec_error
# =========================
# Button Click Event Handlers
# =========================
btn_generate_sql.click(
fn=generate_sql,
inputs=query_input,
outputs=[sql_query_out, error_out]
)
btn_execute_query.click(
fn=execute_query,
inputs=sql_query_out,
outputs=[results_out, error_out]
)
btn_example1.click(
fn=lambda: handle_example_click("Retrieve the top 15 records from contract_data where basetype is Award Notice, awardee has at least 12 characters, and popcity has more than 5 characters. Exclude the fields sub_tier, popzip, awardnumber, basetype, popstate, active, popcountry, type, countrycode, and popstreetaddress"),
outputs=[sql_query_out, error_out, results_out, error_out]
)
btn_example2.click(
fn=lambda: handle_example_click("Show top 10 departments by award amount. Round to zero decimal places."),
outputs=[sql_query_out, error_out, results_out, error_out]
)
btn_example3.click(
fn=lambda: handle_example_click("SELECT * from contract_data LIMIT 10;"),
outputs=[sql_query_out, error_out, results_out, error_out]
)
# Launch the Gradio App
demo.launch()