File size: 6,253 Bytes
b333b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de32fc7
b333b98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats

# Global fontsize variable
FONT_SIZE = 32

# Company ticker mapping for US-based public finance companies
COMPANY_TICKERS = {
    'JPMorgan Chase': 'JPM',
    'Visa': 'V',
    'PNC Financial': 'PNC',
    'Goldman Sachs': 'GS',
    'Bank of America': 'BAC',
    'Wells Fargo': 'WFC',
    'Citigroup': 'C',
    'American Express': 'AXP',
    'Morgan Stanley': 'MS',
    'U.S. Bancorp': 'USB',
    'Capital One': 'COF',
    'Charles Schwab': 'SCHW',
    'BlackRock': 'BLK',
    'Mastercard': 'MA',
    'PayPal': 'PYPL',
    'Fidelity National Information Services': 'FIS',
    'S&P Global': 'SPGI',
    'Northern Trust': 'NTRS',
    'Discover': 'DFS',
    'Synchrony': 'SYF',
    'State Street': 'STT',
    'CME Group': 'CME'
}


# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)

@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
    """Fetch historical stock data and market cap from Yahoo Finance."""
    try:
        data = yf.download(ticker, start=start_date, end=end_date)
        if data.empty:
            raise ValueError(f"No data found for ticker {ticker}")
        info = yf.Ticker(ticker).info
        market_cap = info.get('marketCap', 'N/A')
        if market_cap != 'N/A':
            market_cap = market_cap / 1e9  # Convert to billions
        return data, market_cap
    except Exception as e:
        print(f"Error fetching data for {ticker}: {e}")
        return None, 'N/A'

def plot_to_image(plt, title, market_cap):
    """Convert plot to a PIL Image object."""
    plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
    plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
    plt.legend(fontsize=FONT_SIZE)
    plt.xlabel('Date', fontsize=FONT_SIZE)
    plt.ylabel('', fontsize=FONT_SIZE)
    plt.grid(True)
    plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
    plt.yticks(fontsize=FONT_SIZE)
    plt.tight_layout(rect=[0, 0, 1, 0.95])

    buf = io.BytesIO()
    plt.savefig(buf, format='png', dpi=200)
    plt.close()
    buf.seek(0)
    return Image.open(buf)

def plot_indicator(data, company_name, ticker, indicator, market_cap):
    """Plot selected technical indicator for a single company."""
    plt.figure(figsize=(16, 10))
    if indicator == "SMA":
        sma_55 = data['Close'].rolling(window=55).mean()
        sma_200 = data['Close'].rolling(window=200).mean()
        plt.plot(data.index, data['Close'], label='Close')
        plt.plot(data.index, sma_55, label='55-day SMA')
        plt.plot(data.index, sma_200, label='200-day SMA')
        plt.ylabel('Price', fontsize=FONT_SIZE)
    elif indicator == "MACD":
        exp1 = data['Close'].ewm(span=12, adjust=False).mean()
        exp2 = data['Close'].ewm(span=26, adjust=False).mean()
        macd = exp1 - exp2
        signal = macd.ewm(span=9, adjust=False).mean()
        plt.plot(data.index, macd, label='MACD')
        plt.plot(data.index, signal, label='Signal Line')
        plt.bar(data.index, macd - signal, label='MACD Histogram')
        plt.ylabel('MACD', fontsize=FONT_SIZE)

    return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)

def plot_indicators(company_names, indicator_types):
    """Plot the selected indicators for the selected companies."""
    images = []
    if len(company_names) > 5:
        return None, "You can select up to 5 companies at the same time."
    if len(company_names) > 1 and len(indicator_types) > 1:
        return None, "You can only select one indicator when selecting multiple companies."

    with ThreadPoolExecutor() as executor:
        future_to_company = {
            executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
            for company in company_names
            for indicator in indicator_types
        }

        for future in as_completed(future_to_company):
            company, indicator = future_to_company[future]
            ticker = COMPANY_TICKERS[company]
            data, market_cap = future.result()
            if data is None:
                continue
            images.append(plot_indicator(data, company, ticker, indicator, market_cap))

    return images, ""

def select_all_indicators(select_all):
    """Select or deselect all indicators based on the select_all flag."""
    indicators = ["SMA", "MACD"]
    return indicators if select_all else []

def launch_gradio_app():
    """Launch the Gradio app for interactive plotting."""
    company_choices = list(COMPANY_TICKERS.keys())
    indicators = ["SMA", "MACD"]

    def fetch_and_plot(company_names, indicator_types):
        images, error_message = plot_indicators(company_names, indicator_types)
        if error_message:
            return [None] * len(indicator_types), error_message
        return images, ""

    with gr.Blocks() as demo:
        company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
        
        select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
        indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
        select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
        
        plot_gallery = gr.Gallery(label="Indicator Plots")
        error_markdown = gr.Markdown()

        gr.Interface(
            fetch_and_plot, 
            [company_checkboxgroup, indicator_types_checkboxgroup], 
            [plot_gallery, error_markdown]
        )

    demo.launch()

def profile_code():
    """Profile the main functions to find speed bottlenecks."""
    profiler = cProfile.Profile()
    profiler.enable()

    launch_gradio_app()

    profiler.disable()
    stats = pstats.Stats(profiler).sort_stats('cumtime')
    stats.print_stats(10)

if __name__ == "__main__":
    profile_code()