import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats

# Global fontsize variable
FONT_SIZE = 32

# Company ticker mapping for US-based public finance companies
COMPANY_TICKERS = {
    'JPMorgan Chase': 'JPM',
    'Visa': 'V',
    'PNC Financial': 'PNC',
    'Goldman Sachs': 'GS',
    'Bank of America': 'BAC',
    'Wells Fargo': 'WFC',
    'Citigroup': 'C',
    'American Express': 'AXP',
    'Morgan Stanley': 'MS',
    'U.S. Bancorp': 'USB',
    'Capital One': 'COF',
    'Charles Schwab': 'SCHW',
    'BlackRock': 'BLK',
    'Mastercard': 'MA',
    'PayPal': 'PYPL',
    'Fidelity National Information Services': 'FIS',
    'S&P Global': 'SPGI',
    'Northern Trust': 'NTRS',
    'Discover': 'DFS',
    'Synchrony': 'SYF',
    'State Street': 'STT',
    'CME Group': 'CME'
}


# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)

@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
    """Fetch historical stock data and market cap from Yahoo Finance."""
    try:
        data = yf.download(ticker, start=start_date, end=end_date)
        if data.empty:
            raise ValueError(f"No data found for ticker {ticker}")
        info = yf.Ticker(ticker).info
        market_cap = info.get('marketCap', 'N/A')
        if market_cap != 'N/A':
            market_cap = market_cap / 1e9  # Convert to billions
        return data, market_cap
    except Exception as e:
        print(f"Error fetching data for {ticker}: {e}")
        return None, 'N/A'

def plot_to_image(plt, title, market_cap):
    """Convert plot to a PIL Image object."""
    plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
    plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
    plt.legend(fontsize=FONT_SIZE)
    plt.xlabel('Date', fontsize=FONT_SIZE)
    plt.ylabel('', fontsize=FONT_SIZE)
    plt.grid(True)
    plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
    plt.yticks(fontsize=FONT_SIZE)
    plt.tight_layout(rect=[0, 0, 1, 0.95])

    buf = io.BytesIO()
    plt.savefig(buf, format='png', dpi=200)
    plt.close()
    buf.seek(0)
    return Image.open(buf)

def plot_indicator(data, company_name, ticker, indicator, market_cap):
    """Plot selected technical indicator for a single company."""
    plt.figure(figsize=(16, 10))
    if indicator == "SMA":
        sma_55 = data['Close'].rolling(window=55).mean()
        sma_200 = data['Close'].rolling(window=200).mean()
        plt.plot(data.index, data['Close'], label='Close')
        plt.plot(data.index, sma_55, label='55-day SMA')
        plt.plot(data.index, sma_200, label='200-day SMA')
        plt.ylabel('Price', fontsize=FONT_SIZE)
    elif indicator == "MACD":
        exp1 = data['Close'].ewm(span=12, adjust=False).mean()
        exp2 = data['Close'].ewm(span=26, adjust=False).mean()
        macd = exp1 - exp2
        signal = macd.ewm(span=9, adjust=False).mean()
        plt.plot(data.index, macd, label='MACD')
        plt.plot(data.index, signal, label='Signal Line')
        plt.bar(data.index, macd - signal, label='MACD Histogram')
        plt.ylabel('MACD', fontsize=FONT_SIZE)

    return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)

def plot_indicators(company_names, indicator_types):
    """Plot the selected indicators for the selected companies."""
    images = []
    if len(company_names) > 5:
        return None, "You can select up to 5 companies at the same time."
    if len(company_names) > 1 and len(indicator_types) > 1:
        return None, "You can only select one indicator when selecting multiple companies."

    with ThreadPoolExecutor() as executor:
        future_to_company = {
            executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
            for company in company_names
            for indicator in indicator_types
        }

        for future in as_completed(future_to_company):
            company, indicator = future_to_company[future]
            ticker = COMPANY_TICKERS[company]
            data, market_cap = future.result()
            if data is None:
                continue
            images.append(plot_indicator(data, company, ticker, indicator, market_cap))

    return images, ""

def select_all_indicators(select_all):
    """Select or deselect all indicators based on the select_all flag."""
    indicators = ["SMA", "MACD"]
    return indicators if select_all else []

def launch_gradio_app():
    """Launch the Gradio app for interactive plotting."""
    company_choices = list(COMPANY_TICKERS.keys())
    indicators = ["SMA", "MACD"]

    def fetch_and_plot(company_names, indicator_types):
        images, error_message = plot_indicators(company_names, indicator_types)
        if error_message:
            return [None] * len(indicator_types), error_message
        return images, ""

    with gr.Blocks() as demo:
        company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
        
        select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
        indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
        select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
        
        plot_gallery = gr.Gallery(label="Indicator Plots")
        error_markdown = gr.Markdown()

        gr.Interface(
            fetch_and_plot, 
            [company_checkboxgroup, indicator_types_checkboxgroup], 
            [plot_gallery, error_markdown]
        )

    demo.launch()

def profile_code():
    """Profile the main functions to find speed bottlenecks."""
    profiler = cProfile.Profile()
    profiler.enable()

    launch_gradio_app()

    profiler.disable()
    stats = pstats.Stats(profiler).sort_stats('cumtime')
    stats.print_stats(10)

if __name__ == "__main__":
    profile_code()