File size: 9,948 Bytes
fae0679
 
d722ce7
823fa29
 
fae0679
4b3015b
823fa29
d722ce7
 
 
 
 
 
 
 
 
 
4b3015b
 
 
 
d722ce7
4b3015b
 
 
d722ce7
 
4b3015b
 
 
d722ce7
 
4b3015b
 
 
d722ce7
4b3015b
d722ce7
 
 
 
4b3015b
 
 
 
 
 
 
 
 
 
 
d722ce7
 
 
 
 
 
4b3015b
d722ce7
 
 
4b3015b
d722ce7
4b3015b
d722ce7
 
 
 
 
4b3015b
 
 
d722ce7
 
 
 
 
 
4b3015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d722ce7
 
4b3015b
d722ce7
4b3015b
d722ce7
4b3015b
 
 
 
 
 
d722ce7
4b3015b
 
 
 
 
 
 
 
d722ce7
 
 
 
 
4b3015b
d722ce7
 
 
fae0679
d722ce7
 
4b3015b
 
d722ce7
 
 
 
 
 
 
 
 
 
 
 
4b3015b
d722ce7
 
 
 
 
 
4b3015b
 
d722ce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b3015b
d722ce7
4b3015b
 
d722ce7
 
4b3015b
 
 
d722ce7
 
 
 
 
 
 
 
 
fae0679
 
d722ce7
 
 
 
 
 
4b3015b
 
 
 
 
 
 
 
d722ce7
4b3015b
 
 
 
d722ce7
 
4b3015b
 
 
 
 
 
 
 
d722ce7
 
4b3015b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d722ce7
fae0679
4b3015b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import pandas as pd
import geopandas as gpd
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.cluster.hierarchy import linkage, leaves_list

# ========================
# Data Loading
# ========================
conus_data = pd.read_csv("conus27.csv")
county_geojson = gpd.read_file("county.geojson")
county_embeddings = pd.read_csv("county_embeddings.csv")
county_unemployment = pd.read_csv("county_unemployment.csv")
zcta_poverty = pd.read_csv("zcta_poverty.csv")
zcta_geojson = gpd.read_file("zcta.geojson")

# Prepare unemployment data
county_unemployment_melted = county_unemployment.melt(
    id_vars=['place'], var_name='date', value_name='unemployment_rate'
)
county_unemployment_melted['place'] = county_unemployment_melted['place'].astype(str)
county_geojson_unemployment = county_geojson.merge(
    county_unemployment_melted, left_on='place', right_on='place', how='left'
)

# Prepare poverty data
zcta_poverty_melted = zcta_poverty.melt(
    id_vars=['place'], var_name='year', value_name='poverty_rate'
)
zcta_poverty_melted['place'] = zcta_poverty_melted['place'].astype(str)
zcta_geojson['place'] = zcta_geojson['place'].astype(str)
zcta_geojson_poverty = zcta_geojson.merge(
    zcta_poverty_melted, left_on='place', right_on='place', how='left'
)

# Identify health metrics
health_metrics = [col for col in conus_data.columns if col.startswith('Percent_Person_')]
simplified_metrics = [col.replace('Percent_Person_', '') for col in health_metrics]
metric_mapping = dict(zip(simplified_metrics, health_metrics))

# Create a merged geodataframe for health metrics visualization
# Assuming conus_data has a 'place' or 'GEOID' matching the county_geojson
if 'place' in conus_data.columns:
    merged_health = county_geojson.merge(conus_data, on='place', how='left')
else:
    # If another key needed, adjust here. Assuming 'GEOID' would match, as example.
    if 'GEOID' in county_geojson.columns and 'GEOID' in conus_data.columns:
        merged_health = county_geojson.merge(conus_data, on='GEOID', how='left')
    else:
        raise ValueError("No matching key found to merge health data with geodata.")

# ========================
# Utility Functions
# ========================

def plot_health_metric(metric):
    """
    Plots the geographical distribution of a selected health metric using a better colormap.
    """
    metric_full_name = metric_mapping[metric]
    fig, ax = plt.subplots(1, 1, figsize=(12, 8))
    merged_health.plot(
        column=metric_full_name,
        cmap='viridis',
        markersize=50,
        legend=True,
        legend_kwds={'label': f"{metric} (%)"},
        ax=ax,
        alpha=0.7,
        edgecolor='black',
        linewidth=0.5,
        missing_kwds={"color": "lightgrey", "label": "No Data"}
    )
    ax.set_title(f'Geographical Distribution of {metric}', fontsize=15)
    ax.axis('off')
    plt.tight_layout()
    return fig

def plot_health_histogram(metric):
    """
    Plots the distribution (histogram) of a selected health metric to understand its spread.
    """
    metric_full_name = metric_mapping[metric]
    data = conus_data[metric_full_name].dropna()
    fig, ax = plt.subplots(figsize=(8, 6))
    sns.histplot(data, kde=True, color='teal', ax=ax)
    ax.set_title(f'Distribution of {metric} (%)', fontsize=15)
    ax.set_xlabel(f'{metric} (%)')
    ax.set_ylabel('Count')
    plt.tight_layout()
    return fig

def summarize_health_metrics(metric):
    """
    Generates more detailed summary statistics for a selected health metric.
    Includes median and IQR along with standard describe().
    """
    metric_full_name = metric_mapping[metric]
    data = conus_data[metric_full_name].dropna()
    desc = data.describe().to_frame().reset_index()
    desc.columns = ['Statistic', 'Value']

    # Add median and IQR if not already present
    median_val = data.median()
    q1, q3 = data.quantile([0.25, 0.75])
    iqr = q3 - q1
    # Insert median and IQR below mean row
    extra_stats = pd.DataFrame({
        'Statistic': ['Median', 'IQR'],
        'Value': [median_val, iqr]
    })
    summary = pd.concat([desc, extra_stats], ignore_index=True)
    return summary

def plot_correlation_matrix(selected_metrics):
    """
    Plots a correlation matrix for selected health metrics and reorders the axes using hierarchical clustering.
    """
    selected_columns = [metric_mapping[m] for m in selected_metrics]
    corr = conus_data[selected_columns].corr()

    # Hierarchical clustering to reorder correlation matrix
    linkage_matrix = linkage(1 - corr, method='average')
    idx = leaves_list(linkage_matrix)
    corr = corr.iloc[idx, :].iloc[:, idx]

    fig, ax = plt.subplots(figsize=(10, 8))
    sns.heatmap(
        corr, annot=True, cmap='coolwarm', square=True, ax=ax, 
        xticklabels=corr.columns, yticklabels=corr.columns,
        cbar_kws={"shrink": .8}
    )
    ax.set_title('Correlation Matrix (Hierarchically Clustered)', fontsize=15)
    plt.xticks(rotation=45, ha='right')
    plt.yticks(rotation=0)
    plt.tight_layout()
    return fig

def plot_unemployment_map(date):
    """
    Plots the unemployment rate map for a selected date with an improved colormap.
    """
    date = str(date)
    data = county_geojson_unemployment[county_geojson_unemployment['date'] == date]
    fig, ax = plt.subplots(1, 1, figsize=(12, 8))
    data.plot(
        column='unemployment_rate',
        cmap='YlGnBu',
        linewidth=0.5,
        ax=ax,
        edgecolor='0.8',
        legend=True,
        missing_kwds={"color": "lightgrey", "label": "Missing values"},
    )
    ax.set_title(f'Unemployment Rate by County ({date})', fontsize=15)
    ax.axis('off')
    plt.tight_layout()
    return fig

def plot_poverty_map(year):
    """
    Plots the poverty rate map for a selected year with improved colormap.
    """
    year = str(year)
    data = zcta_geojson_poverty[zcta_geojson_poverty['year'] == year]
    fig, ax = plt.subplots(1, 1, figsize=(12, 8))
    data.plot(
        column='poverty_rate',
        cmap='YlOrRd',
        linewidth=0.5,
        ax=ax,
        edgecolor='0.8',
        legend=True,
        missing_kwds={"color": "lightgrey", "label": "Missing values"},
    )
    ax.set_title(f'Poverty Rate by ZCTA ({year})', fontsize=15)
    ax.axis('off')
    plt.tight_layout()
    return fig

# ========================
# Gradio Interface Functions
# ========================

def health_metric_interface(metric):
    map_fig = plot_health_metric(metric)
    summary = summarize_health_metrics(metric)
    hist_fig = plot_health_histogram(metric)
    return map_fig, summary, hist_fig

def correlation_interface(metrics):
    # Require at least two metrics to show correlation
    if len(metrics) < 2:
        return "Please select at least two metrics to see a correlation matrix."
    fig = plot_correlation_matrix(metrics)
    return fig

def unemployment_interface(date):
    fig = plot_unemployment_map(date)
    return fig

def poverty_interface(year):
    fig = plot_poverty_map(year)
    return fig

# ========================
# Gradio App Setup
# ========================

with gr.Blocks(title="US Population Health Dashboard") as demo:
    gr.Markdown("# US Population Health Dashboard")
    gr.Markdown("""
    Explore health metrics, socioeconomic data, and their geospatial distributions across the United States.
    Use the tabs below to select different datasets and visualizations.
    """)

    with gr.Tab("Health Metrics"):
        gr.Markdown("### Explore a Selected Health Metric")
        gr.Markdown("Select a health metric to view its geographical distribution, summary statistics, and distribution histogram.")
        health_metric = gr.Dropdown(label="Select a Health Metric", choices=simplified_metrics, value=simplified_metrics[0])
        health_plot = gr.Plot(label="Health Metric Map")
        health_summary = gr.Dataframe(label="Summary Statistics", headers=["Statistic", "Value"])
        health_hist = gr.Plot(label="Metric Distribution Histogram")
        health_metric.change(health_metric_interface, inputs=health_metric, outputs=[health_plot, health_summary, health_hist])

    with gr.Tab("Health Metrics Correlation"):
        gr.Markdown("### Correlation Between Health Metrics")
        gr.Markdown("Select multiple health metrics to see how they correlate with each other. The matrix is reordered using hierarchical clustering.")
        correlation_metrics = gr.CheckboxGroup(
            label="Select Health Metrics", 
            choices=simplified_metrics, 
            value=simplified_metrics[:5]
        )
        correlation_plot = gr.Plot(label="Correlation Matrix")
        correlation_metrics.change(correlation_interface, inputs=correlation_metrics, outputs=correlation_plot)

    with gr.Tab("Unemployment Rates Over Time"):
        gr.Markdown("### View Unemployment Rates by County")
        gr.Markdown("Select a date to see the unemployment rate distribution across counties.")
        unique_dates = sorted(county_unemployment_melted['date'].unique())
        unemployment_date = gr.Dropdown(label="Select a Date", choices=unique_dates, value=unique_dates[0])
        unemployment_plot = gr.Plot(label="Unemployment Rate Map")
        unemployment_date.change(unemployment_interface, inputs=unemployment_date, outputs=unemployment_plot)

    with gr.Tab("Poverty Rates Over Time"):
        gr.Markdown("### View Poverty Rates by ZCTA")
        gr.Markdown("Select a year to see the poverty rate distribution across ZIP Code Tabulation Areas.")
        unique_years = sorted(zcta_poverty_melted['year'].unique())
        poverty_year = gr.Dropdown(label="Select a Year", choices=unique_years, value=unique_years[0])
        poverty_plot = gr.Plot(label="Poverty Rate Map")
        poverty_year.change(poverty_interface, inputs=poverty_year, outputs=poverty_plot)

if __name__ == "__main__":
    demo.launch()