File size: 10,972 Bytes
2f36052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77dc67f
 
9327810
77dc67f
 
 
 
 
 
 
 
9327810
a165958
45a7450
e63418f
 
b951dc3
75a7b9a
 
 
 
b951dc3
 
 
9327810
 
75a7b9a
 
 
b951dc3
77dc67f
 
 
 
 
b951dc3
77dc67f
9327810
 
77dc67f
 
9327810
 
 
77dc67f
 
9327810
77dc67f
 
9327810
77dc67f
 
 
01ca6ce
77dc67f
 
75a7b9a
 
77dc67f
75a7b9a
 
 
77dc67f
 
75a7b9a
77dc67f
75a7b9a
77dc67f
9327810
b951dc3
9327810
45a7450
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load and preprocess the dataset
file_path = "cbinsights_data.csv"  # Replace with your actual file path

try:
    data = pd.read_csv(file_path, skiprows=1)
    logger.info("CSV file loaded successfully.")
except FileNotFoundError:
    logger.error(f"File not found: {file_path}")
    raise
except Exception as e:
    logger.error(f"Error loading CSV file: {e}")
    raise

# Standardize column names: strip whitespace and convert to lowercase
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")

# Identify the valuation column dynamically
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
if not valuation_columns:
    logger.error("No column containing 'Valuation' found in the dataset.")
    raise ValueError("Data Error: Unable to find the valuation column. Please check your CSV file.")
elif len(valuation_columns) > 1:
    logger.error("Multiple columns containing 'Valuation' found in the dataset.")
    raise ValueError("Data Error: Multiple valuation columns detected. Please ensure only one valuation column exists.")
else:
    valuation_column = valuation_columns[0]
    logger.info(f"Using valuation column: {valuation_column}")

# Clean and prepare data
data["valuation_billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
data["valuation_billions"] = pd.to_numeric(data["valuation_billions"], errors='coerce')
logger.info("Valuation data cleaned and converted to numeric.")

# Strip whitespace from all string columns
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
logger.info("Whitespace stripped from all string columns.")

# Rename columns for consistency
expected_columns = {
    "company": "Company",
    "valuation_billions": "Valuation_Billions",
    "date_joined": "Date_Joined",
    "country": "Country",
    "city": "City",
    "industry": "Industry",
    "select_investors": "Select_Investors"
}

missing_columns = set(expected_columns.keys()) - set(data.columns)
if missing_columns:
    logger.error(f"Missing columns in the dataset: {missing_columns}")
    raise ValueError(f"Data Error: Missing columns {missing_columns} in the dataset.")

data = data.rename(columns=expected_columns)
logger.info("Columns renamed for consistency.")

# Parse the "Select_Investors" column to map investors to companies
def build_investor_company_mapping(df):
    mapping = {}
    for _, row in df.iterrows():
        company = row["Company"]
        investors = row["Select_Investors"]
        if pd.notnull(investors):
            for investor in investors.split(","):
                investor = investor.strip()
                if investor:  # Ensure investor is not an empty string
                    mapping.setdefault(investor, []).append(company)
    return mapping

investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")

# Function to filter investors based on selected country and industry
def filter_investors_by_country_and_industry(selected_country, selected_industry):
    filtered_data = data.copy()
    logger.info(f"Filtering data for Country: {selected_country}, Industry: {selected_industry}")
    
    if selected_country != "All":
        filtered_data = filtered_data[filtered_data["Country"] == selected_country]
        logger.info(f"Data filtered by country: {selected_country}. Remaining records: {len(filtered_data)}")
    if selected_industry != "All":
        filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
        logger.info(f"Data filtered by industry: {selected_industry}. Remaining records: {len(filtered_data)}")
    
    investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
    
    # Calculate total valuation per investor
    investor_valuations = {}
    for investor, companies in investor_company_mapping_filtered.items():
        total_valuation = filtered_data[filtered_data["Company"].isin(companies)]["Valuation_Billions"].sum()
        if total_valuation >= 20:  # Investors with >= 20B total valuation
            investor_valuations[investor] = total_valuation
    
    logger.info(f"Filtered investors with total valuation >= 20B: {len(investor_valuations)}")
    
    return list(investor_valuations.keys()), filtered_data

# Function to generate the Plotly graph
def generate_graph(selected_investors, filtered_data):
    if not selected_investors:
        logger.warning("No investors selected. Returning empty figure.")
        return go.Figure()
    
    investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
    filtered_mapping = {inv: investor_company_mapping_filtered[inv] for inv in selected_investors if inv in investor_company_mapping_filtered}
    
    logger.info(f"Generating graph for {len(filtered_mapping)} investors.")
    
    # Build the graph
    G = nx.Graph()
    for investor, companies in filtered_mapping.items():
        for company in companies:
            G.add_edge(investor, company)
    
    # Generate positions using spring layout
    pos = nx.spring_layout(G, k=0.2, seed=42)
    
    # Prepare Plotly traces
    edge_x = []
    edge_y = []
    for edge in G.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x += [x0, x1, None]
        edge_y += [y0, y1, None]
    
    edge_trace = go.Scatter(
        x=edge_x, y=edge_y,
        line=dict(width=0.5, color='#888'),
        hoverinfo='none',
        mode='lines'
    )
    
    node_x = []
    node_y = []
    node_text = []
    node_size = []
    node_color = []
    customdata = []
    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        if node in filtered_mapping:
            node_text.append(f"Investor: {node}")
            node_size.append(20)  # Investors have larger size
            node_color.append('orange')
            customdata.append(None)  # Investors do not have a single valuation
        else:
            valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].sum()
            node_text.append(f"Company: {node}<br>Valuation: ${valuation}B")
            node_size.append(10 + (valuation / filtered_data["Valuation_Billions"].max()) * 30 if filtered_data["Valuation_Billions"].max() else 10)
            node_color.append('green')
            customdata.append(f"${valuation}B")
    
    node_trace = go.Scatter(
        x=node_x, y=node_y,
        mode='markers',
        hoverinfo='text',
        text=node_text,
        customdata=customdata,
        marker=dict(
            showscale=False,
            colorscale='YlGnBu',
            color=node_color,
            size=node_size,
            line_width=2
        )
    )
    
    fig = go.Figure(data=[edge_trace, node_trace],
             layout=go.Layout(
                title='Venture Network Visualization',
                titlefont_size=16,
                showlegend=False,
                hovermode='closest',
                margin=dict(b=20,l=5,r=5,t=40),
                annotations=[ dict(
                    text="",
                    showarrow=False,
                    xref="paper", yref="paper") ],
                xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
                yaxis=dict(showgrid=False, zeroline=False, showticklabels=False))
                )
    
    fig.update_traces(marker=dict(line=dict(width=0.5, color='white')), selector=dict(mode='markers'))
    
    logger.info("Plotly graph generated successfully.")
    
    return fig

# Gradio app function to update CheckboxGroup and filtered data
def app(selected_country, selected_industry):
    investor_list, filtered_data = filter_investors_by_country_and_industry(selected_country, selected_industry)
    logger.info("Updating CheckboxGroup and filtered data holder.")
    
    # Use gr.update() to create an update dictionary for the CheckboxGroup
    return gr.update(
        choices=investor_list,
        value=investor_list,
        visible=True
    ), filtered_data

# Gradio Interface
def main():
    country_list = ["All"] + sorted(data["Country"].dropna().unique())
    industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
    
    # Ensure the default values for dropdowns exist
    default_country = "United States" if "United States" in country_list else "All"
    default_industry = "Enterprise Tech" if "Enterprise Tech" in industry_list else "All"
    
    logger.info(f"Available countries: {country_list}")
    logger.info(f"Available industries: {industry_list}")
    
    with gr.Blocks() as demo:
        with gr.Row():
            # Set default value for country and industry dropdowns
            country_filter = gr.Dropdown(choices=country_list, label="Filter by Country", value=default_country)
            industry_filter = gr.Dropdown(choices=industry_list, label="Filter by Industry", value=default_industry)
        
        filtered_investor_list = gr.CheckboxGroup(choices=[], label="Select Investors", visible=False)
        graph_output = gr.Plot(label="Venture Network Graph")
        valuation_display = gr.Markdown(value="Click on a company node to see its valuation.", label="Company Valuation")
        
        filtered_data_holder = gr.State()
        
        # Event handlers for filters
        country_filter.change(
            app,
            inputs=[country_filter, industry_filter],
            outputs=[filtered_investor_list, filtered_data_holder]
        )
        industry_filter.change(
            app,
            inputs=[country_filter, industry_filter],
            outputs=[filtered_investor_list, filtered_data_holder]
        )
        
        # Generate graph when investors are selected
        filtered_investor_list.change(
            generate_graph,
            inputs=[filtered_investor_list, filtered_data_holder],
            outputs=graph_output
        )
        
        # Handle plot click to display valuation
        def display_valuation(plotly_event):
            if not plotly_event or "points" not in plotly_event or not plotly_event["points"]:
                return "Click on a company node to see its valuation."
            point_data = plotly_event["points"][0]
            if "customdata" in point_data and point_data["customdata"]:
                return f"**Valuation:** {point_data['customdata']}"
            return "Click on a company node to see its valuation."
        
        graph_output.events().on_click(
            fn=display_valuation,
            inputs=[graph_output],
            outputs=valuation_display
        )
    
    demo.launch()

if __name__ == "__main__":
    main()