Spaces:
Running
Running
File size: 7,758 Bytes
2f36052 1e9f79e 2f36052 1e9f79e 2f36052 1e9f79e 2f36052 970f3bc 1e9f79e 970f3bc 2f36052 a165958 45a7450 e63418f b951dc3 9327810 1e9f79e 970f3bc b951dc3 9327810 1e9f79e 9327810 1e9f79e 01ca6ce b951dc3 9327810 45a7450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your actual file path
try:
data = pd.read_csv(file_path, skiprows=1)
logger.info("CSV file loaded successfully.")
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
raise
except Exception as e:
logger.error(f"Error loading CSV file: {e}")
raise
# Standardize column names: strip whitespace and convert to lowercase
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
# Identify the valuation column dynamically
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
if not valuation_columns:
logger.error("No column containing 'Valuation' found in the dataset.")
raise ValueError("Data Error: Unable to find the valuation column. Please check your CSV file.")
elif len(valuation_columns) > 1:
logger.error("Multiple columns containing 'Valuation' found in the dataset.")
raise ValueError("Data Error: Multiple valuation columns detected. Please ensure only one valuation column exists.")
else:
valuation_column = valuation_columns[0]
logger.info(f"Using valuation column: {valuation_column}")
# Clean and prepare data
data["valuation_billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
data["valuation_billions"] = pd.to_numeric(data["valuation_billions"], errors='coerce')
logger.info("Valuation data cleaned and converted to numeric.")
# Strip whitespace from all string columns
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
logger.info("Whitespace stripped from all string columns.")
# Rename columns for consistency
expected_columns = {
"company": "Company",
"valuation_billions": "Valuation_Billions",
"date_joined": "Date_Joined",
"country": "Country",
"city": "City",
"industry": "Industry",
"select_investors": "Select_Investors"
}
missing_columns = set(expected_columns.keys()) - set(data.columns)
if missing_columns:
logger.error(f"Missing columns in the dataset: {missing_columns}")
raise ValueError(f"Data Error: Missing columns {missing_columns} in the dataset.")
data = data.rename(columns=expected_columns)
logger.info("Columns renamed for consistency.")
# Parse the "Select_Investors" column to map investors to companies
def build_investor_company_mapping(df):
mapping = {}
for _, row in df.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
if investor: # Ensure investor is not an empty string
mapping.setdefault(investor, []).append(company)
return mapping
investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")
# Function to filter investors based on selected country and industry
def filter_investors_by_country_and_industry(selected_country, selected_industry, valuation_threshold):
filtered_data = data.copy()
logger.info(f"Filtering data for Country: {selected_country}, Industry: {selected_industry}")
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
logger.info(f"Data filtered by country: {selected_country}. Remaining records: {len(filtered_data)}")
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
logger.info(f"Data filtered by industry: {selected_industry}. Remaining records: {len(filtered_data)}")
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
# Calculate total valuation per investor
investor_valuations = {}
for investor, companies in investor_company_mapping_filtered.items():
total_valuation = filtered_data[filtered_data["Company"].isin(companies)]["Valuation_Billions"].sum()
if total_valuation >= valuation_threshold:
investor_valuations[investor] = total_valuation
logger.info(f"Filtered investors with total valuation >= {valuation_threshold}B: {len(investor_valuations)}")
return list(investor_valuations.keys()), filtered_data
# Function to generate the Plotly graph
def generate_graph(investor_list, filtered_data):
if not investor_list:
logger.warning("No investors selected. Returning empty figure.")
return go.Figure()
G = nx.Graph()
for investor in investor_list:
companies = filtered_data[filtered_data["Select_Investors"].str.contains(investor, na=False)]["Company"].tolist()
for company in companies:
G.add_edge(investor, company)
pos = nx.spring_layout(G, k=0.2, seed=42)
# Create Plotly traces for edges and nodes
edge_trace = go.Scatter(
x=[],
y=[],
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines'
)
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_trace['x'] += [x0, x1, None]
edge_trace['y'] += [y0, y1, None]
node_trace = go.Scatter(
x=[],
y=[],
text=[],
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
colorscale='YlGnBu',
size=10,
colorbar=dict(thickness=15, title='Node Valuation')
)
)
for node in G.nodes():
x, y = pos[node]
node_trace['x'] += [x]
node_trace['y'] += [y]
node_trace['text'] += [f"{node}"]
fig = go.Figure(data=[edge_trace, node_trace])
return fig
# Gradio app function
def app(selected_country, selected_industry, valuation_threshold):
investor_list, filtered_data = filter_investors_by_country_and_industry(selected_country, selected_industry, valuation_threshold)
graph = generate_graph(investor_list, filtered_data)
return investor_list, graph
# Gradio Interface
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
logger.info(f"Available countries: {country_list}")
logger.info(f"Available industries: {industry_list}")
with gr.Blocks() as demo:
with gr.Row():
country_filter = gr.Dropdown(choices=country_list, label="Filter by Country", value="All")
industry_filter = gr.Dropdown(choices=industry_list, label="Filter by Industry", value="All")
valuation_threshold = gr.Slider(minimum=0, maximum=50, step=1, value=20, label="Valuation Threshold (in B)")
investor_output = gr.Text(label="Investor Results")
graph_output = gr.Plot(label="Venture Network Graph")
country_filter.change(
app,
inputs=[country_filter, industry_filter, valuation_threshold],
outputs=[investor_output, graph_output]
)
industry_filter.change(
app,
inputs=[country_filter, industry_filter, valuation_threshold],
outputs=[investor_output, graph_output]
)
valuation_threshold.change(
app,
inputs=[country_filter, industry_filter, valuation_threshold],
outputs=[investor_output, graph_output]
)
demo.launch()
if __name__ == "__main__":
main()
|