Spaces:
Sleeping
Sleeping
File size: 8,922 Bytes
a165958 45a7450 9349152 a165958 b951dc3 45a7450 a165958 b951dc3 89c9ef7 b951dc3 a165958 1322835 b951dc3 1322835 b951dc3 1322835 b951dc3 1322835 b951dc3 1322835 a165958 1322835 b951dc3 a165958 b951dc3 1322835 b951dc3 1322835 9aa537c 1322835 9aa537c b951dc3 9aa537c 1322835 b951dc3 1322835 9aa537c 9327810 9aa537c b951dc3 e63418f b951dc3 e63418f b951dc3 9aa537c 9327810 9aa537c 1322835 9327810 9aa537c b951dc3 9327810 9aa537c 9327810 b951dc3 9327810 9aa537c b951dc3 9aa537c e63418f 45a7450 a165958 b951dc3 9aa537c a165958 45a7450 e63418f 1322835 45a7450 9aa537c 1322835 9aa537c b951dc3 9aa537c b951dc3 9aa537c 45a7450 99eb020 45a7450 09b019d 1322835 9aa537c 45a7450 b951dc3 9aa537c b951dc3 9aa537c b951dc3 9aa537c 45a7450 b951dc3 9aa537c 45a7450 9aa537c 9327810 b951dc3 9327810 a165958 45a7450 e63418f b951dc3 9327810 9d35bd9 a5ad05e 9d35bd9 b951dc3 9aa537c 9327810 b951dc3 9327810 b951dc3 9327810 b951dc3 9327810 b951dc3 9327810 45a7450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import gradio as gr
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your actual file path
try:
data = pd.read_csv(file_path, skiprows=1)
logger.info("CSV file loaded successfully.")
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
raise
except Exception as e:
logger.error(f"Error loading CSV file: {e}")
raise
# Standardize column names: strip whitespace and convert to lowercase
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
# Identify the valuation column dynamically
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
if not valuation_columns:
logger.error("No column containing 'Valuation' found in the dataset.")
raise ValueError("Data Error: Unable to find the valuation column. Please check your CSV file.")
elif len(valuation_columns) > 1:
logger.error("Multiple columns containing 'Valuation' found in the dataset.")
raise ValueError("Data Error: Multiple valuation columns detected. Please ensure only one valuation column exists.")
else:
valuation_column = valuation_columns[0]
logger.info(f"Using valuation column: {valuation_column}")
# Clean and prepare data
data["valuation_billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
data["valuation_billions"] = pd.to_numeric(data["valuation_billions"], errors='coerce')
logger.info("Valuation data cleaned and converted to numeric.")
# Strip whitespace from all string columns
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
logger.info("Whitespace stripped from all string columns.")
# Rename columns for consistency
expected_columns = {
"company": "Company",
"valuation_billions": "Valuation_Billions",
"date_joined": "Date_Joined",
"country": "Country",
"city": "City",
"industry": "Industry",
"select_investors": "Select_Investors"
}
missing_columns = set(expected_columns.keys()) - set(data.columns)
if missing_columns:
logger.error(f"Missing columns in the dataset: {missing_columns}")
raise ValueError(f"Data Error: Missing columns {missing_columns} in the dataset.")
data = data.rename(columns=expected_columns)
logger.info("Columns renamed for consistency.")
# Parse the "Select_Investors" column to map investors to companies
def build_investor_company_mapping(df):
mapping = {}
for _, row in df.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
if investor: # Ensure investor is not an empty string
mapping.setdefault(investor, []).append(company)
return mapping
investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")
# Function to filter investors based on selected country and industry
def filter_investors_by_country_and_industry(selected_country, selected_industry):
filtered_data = data.copy()
logger.info(f"Filtering data for Country: {selected_country}, Industry: {selected_industry}")
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
logger.info(f"Data filtered by country: {selected_country}. Remaining records: {len(filtered_data)}")
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
logger.info(f"Data filtered by industry: {selected_industry}. Remaining records: {len(filtered_data)}")
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
# Calculate total valuation per investor
investor_valuations = {}
for investor, companies in investor_company_mapping_filtered.items():
total_valuation = filtered_data[filtered_data["Company"].isin(companies)]["Valuation_Billions"].sum()
if total_valuation >= 20: # Investors with >= 20B total valuation
investor_valuations[investor] = total_valuation
logger.info(f"Filtered investors with total valuation >= 20B: {len(investor_valuations)}")
return list(investor_valuations.keys()), filtered_data
# Function to generate the graph
def generate_graph(selected_investors, filtered_data):
if not selected_investors:
logger.warning("No investors selected. Returning None for graph.")
return None
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
filtered_mapping = {inv: investor_company_mapping_filtered[inv] for inv in selected_investors if inv in investor_company_mapping_filtered}
logger.info(f"Generating graph for {len(filtered_mapping)} investors.")
# Build the graph
G = nx.Graph()
for investor, companies in filtered_mapping.items():
for company in companies:
G.add_edge(investor, company)
# Node size based on valuation
max_valuation = filtered_data["Valuation_Billions"].max()
node_sizes = []
for node in G.nodes:
if node in filtered_mapping:
node_sizes.append(1500) # Fixed size for investors
else:
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].sum()
size = (valuation / max_valuation) * 1500 if max_valuation else 100
node_sizes.append(size)
# Node color: Investors (orange), Companies (green)
node_colors = ["#FF8C00" if node in filtered_mapping else "#32CD32" for node in G.nodes]
# Draw the graph
plt.figure(figsize=(15, 15))
pos = nx.spring_layout(G, k=0.2, seed=42)
nx.draw(
G, pos,
with_labels=True,
node_size=node_sizes,
node_color=node_colors,
font_size=10,
edge_color="#A9A9A9", # Light gray edges
alpha=0.9
)
# Legend
from matplotlib.lines import Line2D
legend_elements = [
Line2D([0], [0], marker='o', color='w', label='Investor', markersize=10, markerfacecolor='#FF8C00'),
Line2D([0], [0], marker='o', color='w', label='Company', markersize=10, markerfacecolor='#32CD32')
]
plt.legend(handles=legend_elements, loc='upper left')
plt.title("Venture Network Visualization", fontsize=20)
plt.axis("off")
# Save plot to BytesIO
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
logger.info("Graph generated successfully.")
return Image.open(buf)
# Gradio app function
def app(selected_country, selected_industry):
investor_list, filtered_data = filter_investors_by_country_and_industry(selected_country, selected_industry)
logger.info("Updating CheckboxGroup and filtered data holder.")
# Use gr.update() to create an update dictionary for the CheckboxGroup
return gr.update(
choices=investor_list,
value=investor_list,
visible=True
), filtered_data
# Gradio Interface
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
logger.info(f"Available countries: {country_list}")
logger.info(f"Available industries: {industry_list}")
with gr.Blocks() as demo:
with gr.Row():
# Set default value to "US" for country and "Enterprise Tech" for industry
country_filter = gr.Dropdown(choices=country_list, label="Filter by Country", value="United States")
industry_filter = gr.Dropdown(choices=industry_list, label="Filter by Industry", value="Enterprise Tech")
filtered_investor_list = gr.CheckboxGroup(choices=[], label="Select Investors", visible=False)
graph_output = gr.Image(type="pil", label="Venture Network Graph")
filtered_data_holder = gr.State()
country_filter.change(
app,
inputs=[country_filter, industry_filter],
outputs=[filtered_investor_list, filtered_data_holder]
)
industry_filter.change(
app,
inputs=[country_filter, industry_filter],
outputs=[filtered_investor_list, filtered_data_holder]
)
filtered_investor_list.change(
generate_graph,
inputs=[filtered_investor_list, filtered_data_holder],
outputs=graph_output
)
demo.launch()
if __name__ == "__main__":
main()
|