File size: 5,150 Bytes
2f36052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7cb59a
2f36052
 
 
 
 
cf8a69c
2f36052
 
 
 
 
 
cf8a69c
2f36052
cf8a69c
2f36052
cf8a69c
2f36052
 
 
 
 
 
 
 
e7cb59a
2f36052
 
 
 
 
 
f7d5c33
 
2f36052
 
 
 
 
e7cb59a
2f36052
f7d5c33
cf8a69c
2f36052
f7d5c33
cf8a69c
 
 
970f3bc
 
 
cf8a69c
970f3bc
 
 
 
e7cb59a
cf8a69c
 
 
 
 
 
 
 
 
970f3bc
cf8a69c
 
f7d5c33
970f3bc
 
 
 
cf8a69c
 
 
 
 
 
 
 
 
 
f7d5c33
970f3bc
 
cf8a69c
 
 
f7d5c33
970f3bc
 
f7d5c33
 
cf8a69c
f7d5c33
 
970f3bc
 
 
cf8a69c
 
 
f7d5c33
 
 
 
 
cf8a69c
970f3bc
 
cc1818e
f7d5c33
 
cf8a69c
 
2f36052
f7d5c33
45a7450
e63418f
 
cf8a69c
9327810
 
cf8a69c
 
e7cb59a
cf8a69c
e7cb59a
 
f7d5c33
 
e7cb59a
9327810
45a7450
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load and preprocess the dataset
file_path = "cbinsights_data.csv"  # Replace with your actual file path

try:
    data = pd.read_csv(file_path, skiprows=1)
    logger.info("CSV file loaded successfully.")
except FileNotFoundError:
    logger.error(f"File not found: {file_path}")
    raise
except Exception as e:
    logger.error(f"Error loading CSV file: {e}")
    raise

# Standardize column names
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")

# Clean and prepare data
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
data.rename(columns={
    "company": "Company",
    "date_joined": "Date_Joined",
    "country": "Country",
    "city": "City",
    "industry": "Industry",
    "select_investors": "Select_Investors"
}, inplace=True)

logger.info("Data cleaned and columns renamed.")

# Build investor-company mapping
def build_investor_company_mapping(df):
    mapping = {}
    for _, row in df.iterrows():
        company = row["Company"]
        investors = row["Select_Investors"]
        if pd.notnull(investors):
            for investor in investors.split(","):
                investor = investor.strip()
                if investor:
                    mapping.setdefault(investor, []).append(company)
    return mapping

investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")

# Filter investors by country and industry (removed valuation threshold)
def filter_investors(selected_country, selected_industry):
    filtered_data = data.copy()
    if selected_country != "All":
        filtered_data = filtered_data[filtered_data["Country"] == selected_country]
    if selected_industry != "All":
        filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]

    investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
    filtered_investors = list(investor_company_mapping_filtered.keys())
    return filtered_investors, filtered_data

# Generate Plotly graph with increased size and improved styling
def generate_graph(investors, filtered_data):
    if not investors:
        logger.warning("No investors selected.")
        return go.Figure()

    G = nx.Graph()
    for investor in investors:
        companies = filtered_data[filtered_data["Select_Investors"].str.contains(investor, na=False)]["Company"].tolist()
        for company in companies:
            G.add_edge(investor, company)

    pos = nx.spring_layout(G, seed=42)
    edge_x = []
    edge_y = []

    for edge in G.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x.extend([x0, x1, None])
        edge_y.extend([y0, y1, None])

    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=1, color='#888'),
        hoverinfo='none',
        mode='lines'
    )

    node_x = []
    node_y = []
    node_text = []
    node_color = []

    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        node_text.append(node)
        node_color.append(10)  # Use a fixed color or other logic

    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        text=node_text,
        mode='markers+text',
        hoverinfo='text',
        marker=dict(
            showscale=False,
            size=15,  # Increased size
            color=node_color,
        ),
        textposition="top center"  # Improved label positioning
    )

    fig = go.Figure(data=[edge_trace, node_trace])
    fig.update_layout(
        showlegend=False,
        title="Venture Networks",
        titlefont_size=20,
        margin=dict(l=20, r=20, t=50, b=20),
        hovermode='closest',
        width=1200,  # Increased width
        height=800   # Increased height
    )
    return fig

# Update the Gradio app to remove valuation threshold
def app(selected_country, selected_industry):
    investors, filtered_data = filter_investors(selected_country, selected_industry)
    graph = generate_graph(investors, filtered_data)
    return investors, graph

# Main function
def main():
    country_list = ["All"] + sorted(data["Country"].dropna().unique())
    industry_list = ["All"] + sorted(data["Industry"].dropna().unique())

    with gr.Blocks() as demo:
        with gr.Row():
            country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
            industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")

        investor_output = gr.Textbox(label="Filtered Investors")
        graph_output = gr.Plot(label="Network Graph")

        country_filter.change(app, [country_filter, industry_filter], [investor_output, graph_output])
        industry_filter.change(app, [country_filter, industry_filter], [investor_output, graph_output])

    demo.launch()

if __name__ == "__main__":
    main()