Spaces:
Sleeping
Sleeping
File size: 5,150 Bytes
2f36052 e7cb59a 2f36052 cf8a69c 2f36052 cf8a69c 2f36052 cf8a69c 2f36052 cf8a69c 2f36052 e7cb59a 2f36052 f7d5c33 2f36052 e7cb59a 2f36052 f7d5c33 cf8a69c 2f36052 f7d5c33 cf8a69c 970f3bc cf8a69c 970f3bc e7cb59a cf8a69c 970f3bc cf8a69c f7d5c33 970f3bc cf8a69c f7d5c33 970f3bc cf8a69c f7d5c33 970f3bc f7d5c33 cf8a69c f7d5c33 970f3bc cf8a69c f7d5c33 cf8a69c 970f3bc cc1818e f7d5c33 cf8a69c 2f36052 f7d5c33 45a7450 e63418f cf8a69c 9327810 cf8a69c e7cb59a cf8a69c e7cb59a f7d5c33 e7cb59a 9327810 45a7450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your actual file path
try:
data = pd.read_csv(file_path, skiprows=1)
logger.info("CSV file loaded successfully.")
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
raise
except Exception as e:
logger.error(f"Error loading CSV file: {e}")
raise
# Standardize column names
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
# Clean and prepare data
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
data.rename(columns={
"company": "Company",
"date_joined": "Date_Joined",
"country": "Country",
"city": "City",
"industry": "Industry",
"select_investors": "Select_Investors"
}, inplace=True)
logger.info("Data cleaned and columns renamed.")
# Build investor-company mapping
def build_investor_company_mapping(df):
mapping = {}
for _, row in df.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
if investor:
mapping.setdefault(investor, []).append(company)
return mapping
investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")
# Filter investors by country and industry (removed valuation threshold)
def filter_investors(selected_country, selected_industry):
filtered_data = data.copy()
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
filtered_investors = list(investor_company_mapping_filtered.keys())
return filtered_investors, filtered_data
# Generate Plotly graph with increased size and improved styling
def generate_graph(investors, filtered_data):
if not investors:
logger.warning("No investors selected.")
return go.Figure()
G = nx.Graph()
for investor in investors:
companies = filtered_data[filtered_data["Select_Investors"].str.contains(investor, na=False)]["Company"].tolist()
for company in companies:
G.add_edge(investor, company)
pos = nx.spring_layout(G, seed=42)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=1, color='#888'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
node_text = []
node_color = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_text.append(node)
node_color.append(10) # Use a fixed color or other logic
node_trace = go.Scatter(
x=node_x,
y=node_y,
text=node_text,
mode='markers+text',
hoverinfo='text',
marker=dict(
showscale=False,
size=15, # Increased size
color=node_color,
),
textposition="top center" # Improved label positioning
)
fig = go.Figure(data=[edge_trace, node_trace])
fig.update_layout(
showlegend=False,
title="Venture Networks",
titlefont_size=20,
margin=dict(l=20, r=20, t=50, b=20),
hovermode='closest',
width=1200, # Increased width
height=800 # Increased height
)
return fig
# Update the Gradio app to remove valuation threshold
def app(selected_country, selected_industry):
investors, filtered_data = filter_investors(selected_country, selected_industry)
graph = generate_graph(investors, filtered_data)
return investors, graph
# Main function
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
with gr.Blocks() as demo:
with gr.Row():
country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")
investor_output = gr.Textbox(label="Filtered Investors")
graph_output = gr.Plot(label="Network Graph")
country_filter.change(app, [country_filter, industry_filter], [investor_output, graph_output])
industry_filter.change(app, [country_filter, industry_filter], [investor_output, graph_output])
demo.launch()
if __name__ == "__main__":
main()
|