Spaces:
Running
Running
File size: 6,557 Bytes
a165958 45a7450 9349152 a165958 45a7450 a165958 cc9514f a165958 1322835 a165958 1322835 a165958 1322835 9aa537c 1322835 9aa537c 1322835 9aa537c 9327810 9aa537c e63418f 9aa537c 9327810 9aa537c 1322835 9327810 9aa537c 9327810 9aa537c 9327810 9aa537c e63418f 9aa537c e63418f 45a7450 a165958 45a7450 9aa537c a165958 45a7450 e63418f 1322835 45a7450 9aa537c 1322835 9aa537c 45a7450 9aa537c 45a7450 99eb020 45a7450 09b019d 1322835 9aa537c 45a7450 09b019d 9aa537c 09b019d 9aa537c 45a7450 9aa537c 45a7450 9349152 9aa537c 45a7450 9aa537c 9327810 9aa537c 9327810 a165958 45a7450 e63418f 45a7450 9327810 9aa537c 9327810 45a7450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import gradio as gr
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your file path
data = pd.read_csv(file_path, skiprows=1)
# Standardize column names: strip whitespace and convert to lowercase
data.columns = data.columns.str.strip().str.lower()
print("Standardized Column Names:", data.columns.tolist())
# Identify the valuation column dynamically
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
if not valuation_columns:
raise ValueError("No column containing 'Valuation' found in the dataset.")
elif len(valuation_columns) > 1:
raise ValueError("Multiple columns containing 'Valuation' found. Please specify.")
else:
valuation_column = valuation_columns[0]
# Clean and prepare data
data["valuation_billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
data["valuation_billions"] = pd.to_numeric(data["valuation_billions"], errors='coerce')
data = data.applymap(lambda x: x.strip() if isinstance(x, str) else x)
# Rename columns for consistency (optional)
data = data.rename(columns={
"company": "Company",
"valuation_billions": "Valuation_Billions",
"date_joined": "Date_Joined",
"country": "Country",
"city": "City",
"industry": "Industry",
"select_investors": "Select_Investors"
})
# Parse the "Select_Investors" column to map investors to companies
def build_investor_company_mapping(df):
mapping = {}
for _, row in df.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
mapping.setdefault(investor, []).append(company)
return mapping
investor_company_mapping = build_investor_company_mapping(data)
# Function to filter investors based on selected country and industry
def filter_investors_by_country_and_industry(selected_country, selected_industry):
filtered_data = data.copy()
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
# Calculate total valuation per investor
investor_valuations = {}
for investor, companies in investor_company_mapping_filtered.items():
total_valuation = filtered_data[filtered_data["Company"].isin(companies)]["Valuation_Billions"].sum()
if total_valuation >= 20: # Investors with >= 20B total valuation
investor_valuations[investor] = total_valuation
return list(investor_valuations.keys()), filtered_data
# Function to generate the graph
def generate_graph(selected_investors, filtered_data):
if not selected_investors:
return None
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
filtered_mapping = {inv: investor_company_mapping_filtered[inv] for inv in selected_investors}
# Build the graph
G = nx.Graph()
for investor, companies in filtered_mapping.items():
for company in companies:
G.add_edge(investor, company)
# Node size based on valuation
max_valuation = filtered_data["Valuation_Billions"].max()
node_sizes = []
for node in G.nodes:
if node in filtered_mapping:
node_sizes.append(1500) # Fixed size for investors
else:
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].sum()
size = (valuation / max_valuation) * 1500 if max_valuation else 100
node_sizes.append(size)
# Node color: Investors (orange), Companies (green)
node_colors = ["#FF8C00" if node in filtered_mapping else "#32CD32" for node in G.nodes]
# Draw the graph
plt.figure(figsize=(15, 15))
pos = nx.spring_layout(G, k=0.2, seed=42)
nx.draw(
G, pos,
with_labels=True,
node_size=node_sizes,
node_color=node_colors,
font_size=10,
edge_color="#A9A9A9", # Light gray edges
alpha=0.9
)
# Legend
from matplotlib.lines import Line2D
legend_elements = [
Line2D([0], [0], marker='o', color='w', label='Investor', markersize=10, markerfacecolor='#FF8C00'),
Line2D([0], [0], marker='o', color='w', label='Company', markersize=10, markerfacecolor='#32CD32')
]
plt.legend(handles=legend_elements, loc='upper left')
plt.title("Venture Network Visualization", fontsize=20)
plt.axis("off")
# Save plot to BytesIO
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
return Image.open(buf)
# Gradio app function
def app(selected_country, selected_industry):
investor_list, filtered_data = filter_investors_by_country_and_industry(selected_country, selected_industry)
return gr.CheckboxGroup.update(
choices=investor_list,
value=investor_list,
visible=True
), filtered_data
# Gradio Interface
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
with gr.Blocks() as demo:
with gr.Row():
country_filter = gr.Dropdown(choices=country_list, label="Filter by Country", value="All")
industry_filter = gr.Dropdown(choices=industry_list, label="Filter by Industry", value="All")
filtered_investor_list = gr.CheckboxGroup(choices=[], label="Select Investors", visible=False)
graph_output = gr.Image(type="pil", label="Venture Network Graph")
filtered_data_holder = gr.State()
country_filter.change(
app,
inputs=[country_filter, industry_filter],
outputs=[filtered_investor_list, filtered_data_holder]
)
industry_filter.change(
app,
inputs=[country_filter, industry_filter],
outputs=[filtered_investor_list, filtered_data_holder]
)
filtered_investor_list.change(
generate_graph,
inputs=[filtered_investor_list, filtered_data_holder],
outputs=graph_output
)
demo.launch()
if __name__ == "__main__":
main()
|