File size: 4,938 Bytes
a165958
45a7450
 
 
9349152
a165958
45a7450
a165958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e63418f
 
 
 
 
 
 
 
 
 
45a7450
e63418f
 
 
 
 
 
 
 
 
 
45a7450
a165958
45a7450
a165958
 
 
e63418f
a165958
 
e63418f
a165958
45a7450
a165958
45a7450
 
e63418f
a165958
45a7450
a165958
45a7450
a165958
45a7450
a165958
45a7450
 
 
99eb020
45a7450
f88e0fe
45a7450
a165958
 
45a7450
a165958
45a7450
 
a165958
45a7450
 
 
 
9349152
 
 
 
45a7450
a165958
45a7450
a165958
e63418f
 
45a7450
 
 
e63418f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45a7450
 
a165958
e63418f
 
 
a165958
3f85ee3
45a7450
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import gradio as gr

# Load and preprocess the dataset
file_path = "cbinsights_data.csv"  # Replace with your file path
data = pd.read_csv(file_path)

# Rename columns based on the first row and drop the header row
data.columns = data.iloc[0]
data = data[1:]
data.columns = ["Company", "Valuation_Billions", "Date_Joined", "Country", "City", "Industry", "Select_Investors"]

# Clean and prepare data
data["Valuation_Billions"] = data["Valuation_Billions"].str.replace('$', '').str.split('.').str[0]
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
data = data.applymap(lambda x: x.strip() if isinstance(x, str) else x)

# Parse the "Select_Investors" column to map investors to companies
investor_company_mapping = {}
for _, row in data.iterrows():
    company = row["Company"]
    investors = row["Select_Investors"]
    if pd.notnull(investors):
        for investor in investors.split(","):
            investor = investor.strip()
            if investor not in investor_company_mapping:
                investor_company_mapping[investor] = []
            investor_company_mapping[investor].append(company)

# Gradio app function
def generate_graph(selected_investors, selected_country, selected_industry):
    filtered_data = data

    # Apply country filter
    if selected_country != "All":
        filtered_data = filtered_data[filtered_data["Country"] == selected_country]

    # Apply industry filter
    if selected_industry != "All":
        filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]

    # Filter the investor-to-company mapping
    filtered_mapping = {}
    for investor, companies in investor_company_mapping.items():
        filtered_companies = [c for c in companies if c in filtered_data["Company"].values]
        if filtered_companies:
            filtered_mapping[investor] = filtered_companies

    # Use the filtered mapping to build the graph
    G = nx.Graph()
    for investor, companies in filtered_mapping.items():
        for company in companies:
            G.add_edge(investor, company)

    # Node sizes based on valuation
    node_sizes = []
    for node in G.nodes:
        if node in filtered_mapping:  # Fixed size for investors
            node_sizes.append(2000)
        else:  # Company size based on valuation
            valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].values
            node_sizes.append(valuation[0] * 100 if len(valuation) > 0 else 100)

    # Node colors
    node_colors = []
    for node in G.nodes:
        if node in filtered_mapping:
            node_colors.append("#FF5733")  # Distinct color for investors
        else:
            node_colors.append("#33FF57")  # Distinct color for companies

    # Create the graph plot
    plt.figure(figsize=(18, 18))
    pos = nx.spring_layout(G, k=0.2, seed=42)  # Fixed seed for consistent layout
    nx.draw(
        G, pos,
        with_labels=True,
        node_size=node_sizes,
        node_color=node_colors,
        font_size=10,
        font_weight="bold",
        edge_color="gray",
        width=1.5
    )
    plt.title("Venture Funded Companies Visualization", fontsize=20)
    plt.axis('off')

    # Save plot to BytesIO object
    buf = BytesIO()
    plt.savefig(buf, format="png", bbox_inches="tight")
    plt.close()
    buf.seek(0)

    # Convert BytesIO to PIL image
    image = Image.open(buf)
    return image

# Gradio Interface
def main():
    investor_list = sorted(investor_company_mapping.keys())
    country_list = ["All"] + sorted(data["Country"].dropna().unique())
    industry_list = ["All"] + sorted(data["Industry"].dropna().unique())

    iface = gr.Interface(
        fn=generate_graph,
        inputs=[
            gr.CheckboxGroup(
                choices=investor_list,
                label="Select Investors",
                value=investor_list  # Default to all selected
            ),
            gr.Dropdown(
                choices=country_list,
                label="Filter by Country",
                value="All"  # Default to no filter
            ),
            gr.Dropdown(
                choices=industry_list,
                label="Filter by Industry",
                value="All"  # Default to no filter
            )
        ],
        outputs=gr.Image(type="pil", label="Venture Network Graph"),
        title="Venture Networks Visualization",
        description=(
            "Select investors and apply optional filters by country and industry "
            "to visualize their investments. The graph shows connections between "
            "investors and the companies they've invested in. Node sizes represent company valuations."
        ),
        flagging_mode="never"
    )

    iface.launch()

if __name__ == "__main__":
    main()