Spaces:
Running
Running
File size: 6,650 Bytes
2f36052 e7cb59a 2f36052 cf8a69c 2f36052 eedc3a8 2f36052 cf8a69c 2f36052 eedc3a8 cf8a69c 2f36052 cf8a69c 2f36052 e7cb59a 2f36052 0de2f41 eedc3a8 2f36052 eedc3a8 0de2f41 eedc3a8 0de2f41 e7cb59a 2f36052 f7d5c33 cf8a69c 2f36052 0de2f41 cf8a69c 970f3bc cf8a69c 970f3bc e7cb59a cf8a69c 970f3bc cf8a69c eedc3a8 970f3bc cf8a69c eedc3a8 cf8a69c eedc3a8 0de2f41 eedc3a8 0de2f41 eedc3a8 0de2f41 eedc3a8 970f3bc cf8a69c eedc3a8 970f3bc f7d5c33 eedc3a8 cf8a69c 0de2f41 970f3bc cf8a69c f7d5c33 eedc3a8 0de2f41 cf8a69c 970f3bc 0de2f41 eedc3a8 cf8a69c 2f36052 f7d5c33 45a7450 e63418f 0de2f41 cf8a69c 9327810 cf8a69c eedc3a8 e7cb59a cf8a69c e7cb59a 0de2f41 e7cb59a 9327810 45a7450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your actual file path
try:
data = pd.read_csv(file_path, skiprows=1)
logger.info("CSV file loaded successfully.")
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
raise
except Exception as e:
logger.error(f"Error loading CSV file: {e}")
raise
# Standardize column names
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
# Clean and prepare data
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
data.rename(columns={
"company": "Company",
"valuation": "Valuation",
"date_joined": "Date_Joined",
"country": "Country",
"city": "City",
"industry": "Industry",
"select_investors": "Select_Investors"
}, inplace=True)
# Convert valuation to numeric for proportional node sizing
data["Valuation"] = pd.to_numeric(
data["Valuation"].replace({"\$": "", ",": ""}, regex=True), errors="coerce"
)
logger.info("Data cleaned and columns renamed.")
# Build investor-company mapping
def build_investor_company_mapping(df):
mapping = {}
for _, row in df.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
if investor:
mapping.setdefault(investor, []).append(company)
return mapping
investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")
# Filter investors by country, industry, and investor selection
def filter_investors(selected_country, selected_industry, selected_investors):
filtered_data = data.copy()
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
if selected_investors != ["All"]:
filtered_data = filtered_data[
filtered_data["Select_Investors"].apply(
lambda x: any(inv in x for inv in selected_investors) if pd.notnull(x) else False
)
]
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
filtered_investors = list(investor_company_mapping_filtered.keys())
return filtered_investors, filtered_data
# Generate Plotly graph
def generate_graph(investors, filtered_data):
if not investors:
logger.warning("No investors selected.")
return go.Figure()
G = nx.Graph()
for investor in investors:
companies = filtered_data[filtered_data["Select_Investors"].str.contains(investor, na=False)]["Company"].tolist()
for company in companies:
G.add_edge(investor, company)
pos = nx.spring_layout(G, seed=42)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=1, color="#888"),
hoverinfo="none",
mode="lines"
)
node_x = []
node_y = []
node_text = []
node_color = []
node_size = []
# Color palette for investors (color blind friendly)
investor_colors = [
"#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7"
]
investor_color_map = {investor: investor_colors[i % len(investor_colors)] for i, investor in enumerate(investors)}
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
if node in investors:
node_text.append(node) # Label investors
node_color.append(investor_color_map[node]) # Assign distinct colors to investors
node_size.append(20) # Fixed size for investor nodes
else:
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation"].sum()
node_text.append("") # Hide company labels by default
node_color.append("lightgreen") # Light green for companies
node_size.append(max(10, valuation / 100)) # Size proportional to valuation
node_trace = go.Scatter(
x=node_x,
y=node_y,
text=node_text,
mode="markers",
hoverinfo="text",
marker=dict(
showscale=False,
size=node_size,
color=node_color,
)
)
fig = go.Figure(data=[edge_trace, node_trace])
fig.update_layout(
showlegend=False,
title="Venture Networks",
titlefont_size=20,
margin=dict(l=20, r=20, t=50, b=20),
hovermode="closest",
width=1200,
height=800
)
return fig
# Gradio app
def app(selected_country, selected_industry, selected_investors):
investors, filtered_data = filter_investors(selected_country, selected_industry, selected_investors)
graph = generate_graph(investors, filtered_data)
return investors, graph
# Main function
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
investor_list = ["All"] + sorted(investor_company_mapping.keys())
with gr.Blocks() as demo:
with gr.Row():
country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")
investor_filter = gr.CheckboxGroup(choices=investor_list, label="Investors", value=["All"])
investor_output = gr.Textbox(label="Filtered Investors")
graph_output = gr.Plot(label="Network Graph")
country_filter.change(
app, [country_filter, industry_filter, investor_filter], [investor_output, graph_output]
)
industry_filter.change(
app, [country_filter, industry_filter, investor_filter], [investor_output, graph_output]
)
investor_filter.change(
app, [country_filter, industry_filter, investor_filter], [investor_output, graph_output]
)
demo.launch()
if __name__ == "__main__":
main()
|