File size: 6,650 Bytes
2f36052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7cb59a
2f36052
 
 
 
 
cf8a69c
2f36052
eedc3a8
2f36052
 
 
 
 
cf8a69c
2f36052
eedc3a8
 
 
 
cf8a69c
2f36052
cf8a69c
2f36052
 
 
 
 
 
 
 
e7cb59a
2f36052
 
 
 
 
 
0de2f41
eedc3a8
2f36052
 
 
 
 
eedc3a8
0de2f41
eedc3a8
 
 
0de2f41
e7cb59a
2f36052
f7d5c33
cf8a69c
2f36052
0de2f41
cf8a69c
 
 
970f3bc
 
 
cf8a69c
970f3bc
 
 
 
e7cb59a
cf8a69c
 
 
 
 
 
 
 
 
970f3bc
cf8a69c
 
eedc3a8
 
 
970f3bc
 
cf8a69c
 
 
 
eedc3a8
 
 
 
 
 
 
 
cf8a69c
 
 
 
 
eedc3a8
0de2f41
 
eedc3a8
 
0de2f41
eedc3a8
0de2f41
eedc3a8
 
970f3bc
 
cf8a69c
 
 
eedc3a8
 
970f3bc
f7d5c33
eedc3a8
cf8a69c
0de2f41
970f3bc
 
 
cf8a69c
 
 
f7d5c33
 
eedc3a8
0de2f41
 
cf8a69c
970f3bc
 
0de2f41
eedc3a8
 
cf8a69c
 
2f36052
f7d5c33
45a7450
e63418f
 
0de2f41
cf8a69c
9327810
 
cf8a69c
 
eedc3a8
e7cb59a
cf8a69c
e7cb59a
 
0de2f41
 
 
 
 
 
 
 
 
e7cb59a
9327810
45a7450
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Load and preprocess the dataset
file_path = "cbinsights_data.csv"  # Replace with your actual file path

try:
    data = pd.read_csv(file_path, skiprows=1)
    logger.info("CSV file loaded successfully.")
except FileNotFoundError:
    logger.error(f"File not found: {file_path}")
    raise
except Exception as e:
    logger.error(f"Error loading CSV file: {e}")
    raise

# Standardize column names
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")

# Clean and prepare data
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
data.rename(columns={
    "company": "Company",
    "valuation": "Valuation",
    "date_joined": "Date_Joined",
    "country": "Country",
    "city": "City",
    "industry": "Industry",
    "select_investors": "Select_Investors"
}, inplace=True)

# Convert valuation to numeric for proportional node sizing
data["Valuation"] = pd.to_numeric(
    data["Valuation"].replace({"\$": "", ",": ""}, regex=True), errors="coerce"
)
logger.info("Data cleaned and columns renamed.")

# Build investor-company mapping
def build_investor_company_mapping(df):
    mapping = {}
    for _, row in df.iterrows():
        company = row["Company"]
        investors = row["Select_Investors"]
        if pd.notnull(investors):
            for investor in investors.split(","):
                investor = investor.strip()
                if investor:
                    mapping.setdefault(investor, []).append(company)
    return mapping

investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")

# Filter investors by country, industry, and investor selection
def filter_investors(selected_country, selected_industry, selected_investors):
    filtered_data = data.copy()
    if selected_country != "All":
        filtered_data = filtered_data[filtered_data["Country"] == selected_country]
    if selected_industry != "All":
        filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
    if selected_investors != ["All"]:
        filtered_data = filtered_data[
            filtered_data["Select_Investors"].apply(
                lambda x: any(inv in x for inv in selected_investors) if pd.notnull(x) else False
            )
        ]

    investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
    filtered_investors = list(investor_company_mapping_filtered.keys())
    return filtered_investors, filtered_data

# Generate Plotly graph
def generate_graph(investors, filtered_data):
    if not investors:
        logger.warning("No investors selected.")
        return go.Figure()

    G = nx.Graph()
    for investor in investors:
        companies = filtered_data[filtered_data["Select_Investors"].str.contains(investor, na=False)]["Company"].tolist()
        for company in companies:
            G.add_edge(investor, company)

    pos = nx.spring_layout(G, seed=42)
    edge_x = []
    edge_y = []

    for edge in G.edges():
        x0, y0 = pos[edge[0]]
        x1, y1 = pos[edge[1]]
        edge_x.extend([x0, x1, None])
        edge_y.extend([y0, y1, None])

    edge_trace = go.Scatter(
        x=edge_x,
        y=edge_y,
        line=dict(width=1, color="#888"),
        hoverinfo="none",
        mode="lines"
    )

    node_x = []
    node_y = []
    node_text = []
    node_color = []
    node_size = []

    # Color palette for investors (color blind friendly)
    investor_colors = [
        "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7"
    ]

    investor_color_map = {investor: investor_colors[i % len(investor_colors)] for i, investor in enumerate(investors)}

    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)

        if node in investors:
            node_text.append(node)  # Label investors
            node_color.append(investor_color_map[node])  # Assign distinct colors to investors
            node_size.append(20)  # Fixed size for investor nodes
        else:
            valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation"].sum()
            node_text.append("")  # Hide company labels by default
            node_color.append("lightgreen")  # Light green for companies
            node_size.append(max(10, valuation / 100))  # Size proportional to valuation

    node_trace = go.Scatter(
        x=node_x,
        y=node_y,
        text=node_text,
        mode="markers",
        hoverinfo="text",
        marker=dict(
            showscale=False,
            size=node_size,
            color=node_color,
        )
    )

    fig = go.Figure(data=[edge_trace, node_trace])
    fig.update_layout(
        showlegend=False,
        title="Venture Networks",
        titlefont_size=20,
        margin=dict(l=20, r=20, t=50, b=20),
        hovermode="closest",
        width=1200,
        height=800
    )
    return fig

# Gradio app
def app(selected_country, selected_industry, selected_investors):
    investors, filtered_data = filter_investors(selected_country, selected_industry, selected_investors)
    graph = generate_graph(investors, filtered_data)
    return investors, graph

# Main function
def main():
    country_list = ["All"] + sorted(data["Country"].dropna().unique())
    industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
    investor_list = ["All"] + sorted(investor_company_mapping.keys())

    with gr.Blocks() as demo:
        with gr.Row():
            country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
            industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")
            investor_filter = gr.CheckboxGroup(choices=investor_list, label="Investors", value=["All"])

        investor_output = gr.Textbox(label="Filtered Investors")
        graph_output = gr.Plot(label="Network Graph")

        country_filter.change(
            app, [country_filter, industry_filter, investor_filter], [investor_output, graph_output]
        )
        industry_filter.change(
            app, [country_filter, industry_filter, investor_filter], [investor_output, graph_output]
        )
        investor_filter.change(
            app, [country_filter, industry_filter, investor_filter], [investor_output, graph_output]
        )

    demo.launch()

if __name__ == "__main__":
    main()