networkx-saas / app.py
LeonceNsh's picture
Update app.py
09b019d verified
raw
history blame
6.41 kB
import pandas as pd
import networkx as nx
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import gradio as gr
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your file path
data = pd.read_csv(file_path)
# Rename columns based on the first row and drop the header row
data.columns = data.iloc[0]
data = data[1:]
data.columns = ["Company", "Valuation_Billions", "Date_Joined", "Country", "City", "Industry", "Select_Investors"]
# Clean and prepare data
data["Valuation_Billions"] = data["Valuation_Billions"].str.replace('$', '').str.split('.').str[0]
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
data = data.applymap(lambda x: x.strip() if isinstance(x, str) else x)
# Parse the "Select_Investors" column to map investors to companies
investor_company_mapping = {}
for _, row in data.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
if investor not in investor_company_mapping:
investor_company_mapping[investor] = []
investor_company_mapping[investor].append(company)
# Gradio app functions
def filter_investors_by_country_and_industry(selected_country, selected_industry):
filtered_data = data
# Apply filters
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
# Calculate total valuation per investor
investor_valuations = {}
for investor, companies in investor_company_mapping.items():
total_valuation = 0
for company in companies:
if company in filtered_data["Company"].values:
valuation = filtered_data.loc[filtered_data["Company"] == company, "Valuation_Billions"].values
total_valuation += valuation[0] if len(valuation) > 0 else 0
if total_valuation >= 20: # Filter by total valuation
investor_valuations[investor] = total_valuation
return list(investor_valuations.keys()), filtered_data
def generate_graph(selected_investors, filtered_data):
if not selected_investors:
return None
# Filter the investor-to-company mapping
filtered_mapping = {}
for investor, companies in investor_company_mapping.items():
if investor in selected_investors:
filtered_companies = [c for c in companies if c in filtered_data["Company"].values]
if filtered_companies:
filtered_mapping[investor] = filtered_companies
# Use the filtered mapping to build the graph
G = nx.Graph()
for investor, companies in filtered_mapping.items():
for company in companies:
G.add_edge(investor, company)
# Node sizes based on valuation
node_sizes = []
for node in G.nodes:
if node in filtered_mapping: # Fixed size for investors
node_sizes.append(2000)
else: # Company size based on valuation
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].values
node_sizes.append(valuation[0] * 50 if len(valuation) > 0 else 100)
# Node colors
node_colors = []
for node in G.nodes:
if node in filtered_mapping:
node_colors.append("#FF5733") # Distinct color for investors
else:
node_colors.append("#33FF57") # Distinct color for companies
# Create the graph plot
plt.figure(figsize=(18, 18))
pos = nx.spring_layout(G, k=0.2, seed=42) # Fixed seed for consistent layout
nx.draw(
G, pos,
with_labels=True,
node_size=node_sizes,
node_color=node_colors,
alpha=0.8, # Slight transparency for Tufte-inspired visuals
font_size=10,
font_weight="bold",
edge_color="#B0BEC5", # Neutral, muted edge color
width=0.8 # Thin edges for minimal visual clutter
)
# Add a legend for node size (valuation)
min_size, max_size = 50, 5000 # Example scale
for size, label in zip([min_size, max_size], ["$1B", "$100B"]):
plt.scatter([], [], s=size, color="#33FF57", label=f"{label} valuation")
plt.legend(scatterpoints=1, frameon=False, labelspacing=1.5, loc="lower left", fontsize=12)
plt.title("Venture Funded Companies Visualization", fontsize=20)
plt.axis('off')
# Save plot to BytesIO object
buf = BytesIO()
plt.savefig(buf, format="png", bbox_inches="tight")
plt.close()
buf.seek(0)
# Convert BytesIO to PIL image
image = Image.open(buf)
return image
def app(selected_country, selected_industry):
investor_list, filtered_data = filter_investors_by_country_and_industry(selected_country, selected_industry)
return gr.update(
choices=investor_list,
value=investor_list,
visible=True
), filtered_data
# Gradio Interface
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
with gr.Blocks() as demo:
with gr.Row():
country_filter = gr.Dropdown(choices=country_list, label="Filter by Country", value="All")
industry_filter = gr.Dropdown(choices=industry_list, label="Filter by Industry", value="All")
filtered_investor_list = gr.CheckboxGroup(
choices=[],
label="Select Investors",
visible=False
)
graph_output = gr.Image(type="pil", label="Venture Network Graph")
filtered_data_holder = gr.State()
country_filter.change(
app,
inputs=[country_filter, industry_filter],
outputs=[filtered_investor_list, filtered_data_holder]
)
industry_filter.change(
app,
inputs=[country_filter, industry_filter],
outputs=[filtered_investor_list, filtered_data_holder]
)
filtered_investor_list.change(
generate_graph,
inputs=[filtered_investor_list, filtered_data_holder],
outputs=graph_output
)
demo.launch()
if __name__ == "__main__":
main()