Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,18 @@ import plotly.graph_objects as go
|
|
4 |
import gradio as gr
|
5 |
import logging
|
6 |
|
7 |
-
#
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
|
14 |
try:
|
15 |
-
data = pd.read_csv(
|
16 |
logger.info("CSV file loaded successfully.")
|
17 |
except FileNotFoundError:
|
18 |
-
logger.error(f"File not found: {
|
19 |
raise
|
20 |
except Exception as e:
|
21 |
logger.error(f"Error loading CSV file: {e}")
|
@@ -35,8 +35,8 @@ valuation_column = valuation_columns[0]
|
|
35 |
logger.info(f"Using valuation column: {valuation_column}")
|
36 |
|
37 |
# Clean and prepare data
|
38 |
-
data["
|
39 |
-
data["
|
40 |
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
|
41 |
data.rename(columns={
|
42 |
"company": "Company",
|
@@ -49,11 +49,8 @@ data.rename(columns={
|
|
49 |
|
50 |
logger.info("Data cleaned and columns renamed.")
|
51 |
|
52 |
-
#
|
53 |
def build_investor_company_mapping(df):
|
54 |
-
"""
|
55 |
-
Builds a mapping from investors to the companies they've invested in.
|
56 |
-
"""
|
57 |
mapping = {}
|
58 |
for _, row in df.iterrows():
|
59 |
company = row["Company"]
|
@@ -68,48 +65,30 @@ def build_investor_company_mapping(df):
|
|
68 |
investor_company_mapping = build_investor_company_mapping(data)
|
69 |
logger.info("Investor to company mapping created.")
|
70 |
|
71 |
-
#
|
72 |
def filter_investors(selected_country, selected_industry, selected_investors):
|
73 |
-
"""
|
74 |
-
Filters the dataset based on selected country, industry, and investors.
|
75 |
-
"""
|
76 |
filtered_data = data.copy()
|
77 |
if selected_country != "All":
|
78 |
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
|
79 |
if selected_industry != "All":
|
80 |
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
|
81 |
if selected_investors:
|
82 |
-
pattern = '|'.join(selected_investors)
|
83 |
filtered_data = filtered_data[filtered_data["Select_Investors"].str.contains(pattern, na=False)]
|
84 |
-
|
85 |
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
|
86 |
filtered_investors = list(investor_company_mapping_filtered.keys())
|
87 |
return filtered_investors, filtered_data
|
88 |
|
89 |
-
#
|
90 |
def generate_graph(investors, filtered_data):
|
91 |
-
"""
|
92 |
-
Generates an interactive network graph using Plotly.
|
93 |
-
"""
|
94 |
if not investors:
|
95 |
logger.warning("No investors selected.")
|
96 |
-
|
97 |
-
fig = go.Figure()
|
98 |
-
fig.update_layout(
|
99 |
-
title="No data available for the selected filters.",
|
100 |
-
xaxis=dict(visible=False),
|
101 |
-
yaxis=dict(visible=False),
|
102 |
-
annotations=[dict(
|
103 |
-
text="Please adjust your filters to display the network graph.",
|
104 |
-
showarrow=False,
|
105 |
-
xref="paper", yref="paper",
|
106 |
-
x=0.5, y=0.5,
|
107 |
-
font=dict(size=20)
|
108 |
-
)]
|
109 |
-
)
|
110 |
-
return fig
|
111 |
|
112 |
-
#
|
|
|
|
|
113 |
color_palette = [
|
114 |
"#377eb8", # Blue
|
115 |
"#e41a1c", # Red
|
@@ -119,216 +98,200 @@ def generate_graph(investors, filtered_data):
|
|
119 |
"#ffff33", # Yellow
|
120 |
"#a65628", # Brown
|
121 |
"#f781bf", # Pink
|
|
|
122 |
]
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
# Create the graph
|
131 |
G = nx.Graph()
|
132 |
for investor in investors:
|
133 |
-
companies = filtered_data[filtered_data["Select_Investors"].str.contains(investor, na=False)]["Company"].tolist()
|
134 |
for company in companies:
|
135 |
-
G.add_node(company
|
136 |
-
G.add_node(investor
|
137 |
G.add_edge(investor, company)
|
138 |
-
|
139 |
-
|
140 |
-
pos = nx.spring_layout(G, seed=42, k=0.5)
|
141 |
-
|
142 |
-
# Prepare edge traces
|
143 |
edge_x = []
|
144 |
edge_y = []
|
|
|
145 |
for edge in G.edges():
|
146 |
x0, y0 = pos[edge[0]]
|
147 |
x1, y1 = pos[edge[1]]
|
148 |
-
edge_x
|
149 |
-
edge_y
|
150 |
-
|
151 |
edge_trace = go.Scatter(
|
152 |
x=edge_x,
|
153 |
y=edge_y,
|
154 |
-
line=dict(width=0.5, color='#
|
155 |
hoverinfo='none',
|
156 |
mode='lines'
|
157 |
)
|
158 |
-
|
159 |
-
# Prepare node traces
|
160 |
node_x = []
|
161 |
node_y = []
|
162 |
node_text = []
|
163 |
node_color = []
|
164 |
node_size = []
|
165 |
-
|
166 |
-
|
167 |
-
for node in G.nodes(
|
168 |
-
x, y = pos[node
|
169 |
node_x.append(x)
|
170 |
node_y.append(y)
|
171 |
-
|
172 |
-
|
173 |
-
node_text.append(node
|
174 |
-
node_color.append(investor_color_map[node
|
175 |
-
node_size.append(
|
|
|
176 |
else:
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
node_size.append(size)
|
181 |
-
node_text.append(
|
182 |
-
node_color.append("#
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
node_trace = go.Scatter(
|
185 |
x=node_x,
|
186 |
y=node_y,
|
187 |
-
mode='markers+text',
|
188 |
text=node_text,
|
189 |
-
|
190 |
hoverinfo='text',
|
|
|
191 |
marker=dict(
|
192 |
showscale=False,
|
193 |
-
color=node_color,
|
194 |
size=node_size,
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
197 |
)
|
198 |
-
|
199 |
-
# Create the figure
|
200 |
-
fig = go.Figure(data=[edge_trace, node_trace])
|
201 |
-
|
202 |
# Add legend manually
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
)
|
219 |
-
|
220 |
-
|
221 |
fig.update_layout(
|
222 |
-
title=
|
223 |
-
'text': "Venture Networks",
|
224 |
-
'y':0.95,
|
225 |
-
'x':0.5,
|
226 |
-
'xanchor': 'center',
|
227 |
-
'yanchor': 'top'
|
228 |
-
},
|
229 |
titlefont_size=24,
|
230 |
-
|
231 |
-
legend=dict(
|
232 |
-
title="Top Investors",
|
233 |
-
itemsizing='constant',
|
234 |
-
itemclick='toggleothers',
|
235 |
-
itemdoubleclick='toggle',
|
236 |
-
font=dict(size=10)
|
237 |
-
),
|
238 |
-
margin=dict(l=40, r=40, t=80, b=40),
|
239 |
hovermode='closest',
|
240 |
-
width=
|
241 |
height=800,
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
244 |
)
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
return fig
|
247 |
|
248 |
-
#
|
249 |
def app(selected_country, selected_industry, selected_investors):
|
250 |
-
"""
|
251 |
-
Main application function that filters data and generates the network graph.
|
252 |
-
"""
|
253 |
investors, filtered_data = filter_investors(selected_country, selected_industry, selected_investors)
|
|
|
|
|
254 |
graph = generate_graph(investors, filtered_data)
|
255 |
-
return ', '.join(investors)
|
256 |
|
|
|
257 |
def main():
|
258 |
-
|
259 |
-
Initializes and launches the Gradio interface.
|
260 |
-
"""
|
261 |
-
# Prepare dropdown options
|
262 |
country_list = ["All"] + sorted(data["Country"].dropna().unique())
|
263 |
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
|
264 |
investor_list = sorted(investor_company_mapping.keys())
|
265 |
-
|
266 |
-
|
267 |
-
with gr.Blocks(css="""
|
268 |
-
.gradio-container {
|
269 |
-
background-color: #f9f9f9;
|
270 |
-
padding: 20px;
|
271 |
-
}
|
272 |
-
.gradio-row {
|
273 |
-
justify-content: center;
|
274 |
-
}
|
275 |
-
""") as demo:
|
276 |
gr.Markdown("""
|
277 |
# Venture Networks Visualization
|
278 |
-
|
279 |
-
Explore the relationships between investors and companies across different countries and industries. Use the filters below to customize the network graph.
|
280 |
-
|
281 |
-
**Instructions:**
|
282 |
-
- Select a country and/or industry to filter the data.
|
283 |
-
- Choose one or more investors to focus on specific investment activities.
|
284 |
-
- Hover over company nodes to view their valuations.
|
285 |
""")
|
286 |
-
|
287 |
with gr.Row():
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
)
|
308 |
-
reset_button = gr.Button("Reset Filters", variant="secondary")
|
309 |
-
with gr.Column(scale=3):
|
310 |
-
graph_output = gr.Plot(label="Network Graph")
|
311 |
-
|
312 |
with gr.Row():
|
313 |
investor_output = gr.Textbox(label="Filtered Investors", interactive=False)
|
314 |
-
|
315 |
-
|
316 |
inputs = [country_filter, industry_filter, investor_filter]
|
317 |
outputs = [investor_output, graph_output]
|
318 |
-
|
319 |
-
#
|
320 |
-
country_filter.change(
|
321 |
-
industry_filter.change(
|
322 |
-
investor_filter.change(
|
323 |
-
|
324 |
-
|
325 |
-
# Add Footer
|
326 |
gr.Markdown("""
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
""")
|
330 |
-
|
331 |
-
# Launch the Gradio app
|
332 |
demo.launch()
|
333 |
|
334 |
if __name__ == "__main__":
|
|
|
4 |
import gradio as gr
|
5 |
import logging
|
6 |
|
7 |
+
# Set up logging
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
+
# Load and preprocess the dataset
|
12 |
+
file_path = "cbinsights_data.csv" # Replace with your actual file path
|
13 |
|
14 |
try:
|
15 |
+
data = pd.read_csv(file_path, skiprows=1)
|
16 |
logger.info("CSV file loaded successfully.")
|
17 |
except FileNotFoundError:
|
18 |
+
logger.error(f"File not found: {file_path}")
|
19 |
raise
|
20 |
except Exception as e:
|
21 |
logger.error(f"Error loading CSV file: {e}")
|
|
|
35 |
logger.info(f"Using valuation column: {valuation_column}")
|
36 |
|
37 |
# Clean and prepare data
|
38 |
+
data["Valuation_Billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
|
39 |
+
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
|
40 |
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
|
41 |
data.rename(columns={
|
42 |
"company": "Company",
|
|
|
49 |
|
50 |
logger.info("Data cleaned and columns renamed.")
|
51 |
|
52 |
+
# Build investor-company mapping
|
53 |
def build_investor_company_mapping(df):
|
|
|
|
|
|
|
54 |
mapping = {}
|
55 |
for _, row in df.iterrows():
|
56 |
company = row["Company"]
|
|
|
65 |
investor_company_mapping = build_investor_company_mapping(data)
|
66 |
logger.info("Investor to company mapping created.")
|
67 |
|
68 |
+
# Filter investors by country, industry, and investor selection
|
69 |
def filter_investors(selected_country, selected_industry, selected_investors):
|
|
|
|
|
|
|
70 |
filtered_data = data.copy()
|
71 |
if selected_country != "All":
|
72 |
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
|
73 |
if selected_industry != "All":
|
74 |
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
|
75 |
if selected_investors:
|
76 |
+
pattern = '|'.join([re.escape(inv) for inv in selected_investors])
|
77 |
filtered_data = filtered_data[filtered_data["Select_Investors"].str.contains(pattern, na=False)]
|
78 |
+
|
79 |
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
|
80 |
filtered_investors = list(investor_company_mapping_filtered.keys())
|
81 |
return filtered_investors, filtered_data
|
82 |
|
83 |
+
# Generate Plotly graph
|
84 |
def generate_graph(investors, filtered_data):
|
|
|
|
|
|
|
85 |
if not investors:
|
86 |
logger.warning("No investors selected.")
|
87 |
+
return go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Create a color map for investors
|
90 |
+
unique_investors = investors
|
91 |
+
num_colors = len(unique_investors)
|
92 |
color_palette = [
|
93 |
"#377eb8", # Blue
|
94 |
"#e41a1c", # Red
|
|
|
98 |
"#ffff33", # Yellow
|
99 |
"#a65628", # Brown
|
100 |
"#f781bf", # Pink
|
101 |
+
"#999999", # Grey
|
102 |
]
|
103 |
+
# Extend color_palette if necessary
|
104 |
+
while num_colors > len(color_palette):
|
105 |
+
color_palette.extend(color_palette)
|
106 |
+
|
107 |
+
investor_color_map = {investor: color_palette[i] for i, investor in enumerate(unique_investors)}
|
108 |
+
|
|
|
|
|
109 |
G = nx.Graph()
|
110 |
for investor in investors:
|
111 |
+
companies = filtered_data[filtered_data["Select_Investors"].str.contains(re.escape(investor), na=False)]["Company"].tolist()
|
112 |
for company in companies:
|
113 |
+
G.add_node(company)
|
114 |
+
G.add_node(investor)
|
115 |
G.add_edge(investor, company)
|
116 |
+
|
117 |
+
pos = nx.spring_layout(G, seed=42)
|
|
|
|
|
|
|
118 |
edge_x = []
|
119 |
edge_y = []
|
120 |
+
|
121 |
for edge in G.edges():
|
122 |
x0, y0 = pos[edge[0]]
|
123 |
x1, y1 = pos[edge[1]]
|
124 |
+
edge_x.extend([x0, x1, None])
|
125 |
+
edge_y.extend([y0, y1, None])
|
126 |
+
|
127 |
edge_trace = go.Scatter(
|
128 |
x=edge_x,
|
129 |
y=edge_y,
|
130 |
+
line=dict(width=0.5, color='#aaaaaa'),
|
131 |
hoverinfo='none',
|
132 |
mode='lines'
|
133 |
)
|
134 |
+
|
|
|
135 |
node_x = []
|
136 |
node_y = []
|
137 |
node_text = []
|
138 |
node_color = []
|
139 |
node_size = []
|
140 |
+
node_hovertext = []
|
141 |
+
|
142 |
+
for node in G.nodes():
|
143 |
+
x, y = pos[node]
|
144 |
node_x.append(x)
|
145 |
node_y.append(y)
|
146 |
+
if node in investors:
|
147 |
+
# Investor node
|
148 |
+
node_text.append(node) # Label investors
|
149 |
+
node_color.append(investor_color_map[node]) # Color assigned to investor
|
150 |
+
node_size.append(30) # Fixed size for investors
|
151 |
+
node_hovertext.append(f"Investor: {node}")
|
152 |
else:
|
153 |
+
# Company node
|
154 |
+
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].values
|
155 |
+
industry = filtered_data.loc[filtered_data["Company"] == node, "Industry"].values
|
156 |
+
if len(valuation) > 0 and not pd.isnull(valuation[0]):
|
157 |
+
size = valuation[0] * 5 # Scale size as needed
|
158 |
+
if size < 10:
|
159 |
+
size = 10 # Minimum size
|
160 |
+
else:
|
161 |
+
size = 15 # Default size
|
162 |
node_size.append(size)
|
163 |
+
node_text.append("") # Hide company labels by default
|
164 |
+
node_color.append("#a6d854") # Light green color for companies
|
165 |
+
hovertext = f"Company: {node}"
|
166 |
+
if len(industry) > 0 and not pd.isnull(industry[0]):
|
167 |
+
hovertext += f"<br>Industry: {industry[0]}"
|
168 |
+
if len(valuation) > 0 and not pd.isnull(valuation[0]):
|
169 |
+
hovertext += f"<br>Valuation: ${valuation[0]}B"
|
170 |
+
node_hovertext.append(hovertext)
|
171 |
+
|
172 |
node_trace = go.Scatter(
|
173 |
x=node_x,
|
174 |
y=node_y,
|
|
|
175 |
text=node_text,
|
176 |
+
mode='markers+text',
|
177 |
hoverinfo='text',
|
178 |
+
hovertext=node_hovertext,
|
179 |
marker=dict(
|
180 |
showscale=False,
|
|
|
181 |
size=node_size,
|
182 |
+
color=node_color,
|
183 |
+
line=dict(width=0.5, color='#333333')
|
184 |
+
),
|
185 |
+
textposition="middle center",
|
186 |
+
textfont=dict(size=12, color="#000000")
|
187 |
)
|
188 |
+
|
|
|
|
|
|
|
189 |
# Add legend manually
|
190 |
+
legend_items = []
|
191 |
+
for investor in unique_investors:
|
192 |
+
legend_items.append(
|
193 |
+
go.Scatter(
|
194 |
+
x=[None],
|
195 |
+
y=[None],
|
196 |
+
mode='markers',
|
197 |
+
marker=dict(
|
198 |
+
size=10,
|
199 |
+
color=investor_color_map[investor]
|
200 |
+
),
|
201 |
+
legendgroup=investor,
|
202 |
+
showlegend=True,
|
203 |
+
name=investor
|
204 |
+
)
|
205 |
+
)
|
206 |
+
|
207 |
+
fig = go.Figure(data=legend_items + [edge_trace, node_trace])
|
208 |
fig.update_layout(
|
209 |
+
title="Venture Networks",
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
titlefont_size=24,
|
211 |
+
margin=dict(l=20, r=20, t=60, b=20),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
hovermode='closest',
|
213 |
+
width=1000,
|
214 |
height=800,
|
215 |
+
legend=dict(
|
216 |
+
title="Investors",
|
217 |
+
font=dict(size=12),
|
218 |
+
itemsizing='constant'
|
219 |
+
)
|
220 |
)
|
221 |
+
|
222 |
+
# Improve layout responsiveness
|
223 |
+
fig.update_layout(
|
224 |
+
autosize=True,
|
225 |
+
xaxis={'showgrid': False, 'zeroline': False, 'visible': False},
|
226 |
+
yaxis={'showgrid': False, 'zeroline': False, 'visible': False}
|
227 |
+
)
|
228 |
+
|
229 |
return fig
|
230 |
|
231 |
+
# Gradio app
|
232 |
def app(selected_country, selected_industry, selected_investors):
|
|
|
|
|
|
|
233 |
investors, filtered_data = filter_investors(selected_country, selected_industry, selected_investors)
|
234 |
+
if not investors:
|
235 |
+
return "No investors found with the selected filters.", go.Figure()
|
236 |
graph = generate_graph(investors, filtered_data)
|
237 |
+
return ', '.join(investors), graph
|
238 |
|
239 |
+
# Main function
|
240 |
def main():
|
241 |
+
import re # Added import for regex
|
|
|
|
|
|
|
242 |
country_list = ["All"] + sorted(data["Country"].dropna().unique())
|
243 |
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
|
244 |
investor_list = sorted(investor_company_mapping.keys())
|
245 |
+
|
246 |
+
with gr.Blocks(title="Venture Networks Visualization") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
gr.Markdown("""
|
248 |
# Venture Networks Visualization
|
249 |
+
Explore the connections between investors and companies in the venture capital ecosystem. Use the filters below to customize the network graph.
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
""")
|
|
|
251 |
with gr.Row():
|
252 |
+
country_filter = gr.Dropdown(
|
253 |
+
choices=country_list,
|
254 |
+
label="Country",
|
255 |
+
value="All",
|
256 |
+
info="Filter companies by country."
|
257 |
+
)
|
258 |
+
industry_filter = gr.Dropdown(
|
259 |
+
choices=industry_list,
|
260 |
+
label="Industry",
|
261 |
+
value="All",
|
262 |
+
info="Filter companies by industry."
|
263 |
+
)
|
264 |
+
investor_filter = gr.Dropdown(
|
265 |
+
choices=investor_list,
|
266 |
+
label="Select Investors",
|
267 |
+
value=[],
|
268 |
+
multiselect=True,
|
269 |
+
info="Select one or more investors to visualize."
|
270 |
+
)
|
|
|
|
|
|
|
|
|
|
|
271 |
with gr.Row():
|
272 |
investor_output = gr.Textbox(label="Filtered Investors", interactive=False)
|
273 |
+
graph_output = gr.Plot(label="Network Graph")
|
274 |
+
|
275 |
inputs = [country_filter, industry_filter, investor_filter]
|
276 |
outputs = [investor_output, graph_output]
|
277 |
+
|
278 |
+
# Update the graph when any filter changes
|
279 |
+
country_filter.change(app, inputs, outputs)
|
280 |
+
industry_filter.change(app, inputs, outputs)
|
281 |
+
investor_filter.change(app, inputs, outputs)
|
282 |
+
|
|
|
|
|
283 |
gr.Markdown("""
|
284 |
+
**Instructions:**
|
285 |
+
- **Country**: Select a country to filter companies based on their location.
|
286 |
+
- **Industry**: Choose an industry to focus on companies within that sector.
|
287 |
+
- **Select Investors**: Pick one or more investors to visualize their network.
|
288 |
+
|
289 |
+
**Graph Interaction:**
|
290 |
+
- **Zoom**: Use your mouse wheel or trackpad to zoom in and out.
|
291 |
+
- **Pan**: Click and drag to move around the graph.
|
292 |
+
- **Hover**: Hover over nodes to see more information.
|
293 |
""")
|
294 |
+
|
|
|
295 |
demo.launch()
|
296 |
|
297 |
if __name__ == "__main__":
|